Intuitive Introduction to the Important Ideas of Inference Robin Lock – St. Lawrence University Patti Frazer Lock – St. Lawrence University Kari Lock Morgan.

Slides:



Advertisements
Similar presentations
Panel at 2013 Joint Mathematics Meetings
Advertisements

StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock St. Lawrence University USCOTS Breakout – May 2013 Patti Frazer Lock.
What Can We Do When Conditions Arent Met? Robin H. Lock, Burry Professor of Statistics St. Lawrence University BAPS at 2012 JSM San Diego, August 2012.
Statistical Inference Using Scrambles and Bootstraps Robin Lock Burry Professor of Statistics St. Lawrence University MAA Allegheny Mountain 2014 Section.
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock Morgan, Lock, and Lock MAA Minicourse –
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock, Lock, and Lock MAA Minicourse – Joint Mathematics.
Simulating with StatKey Kari Lock Morgan Department of Statistical Science Duke University Joint Mathematical Meetings, San Diego 1/11/13.
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Hypothesis Testing: Intervals and Tests
Bootstrap Distributions Or: How do we get a sense of a sampling distribution when we only have ONE sample?
Early Inference: Using Bootstraps to Introduce Confidence Intervals Robin H. Lock, Burry Professor of Statistics Patti Frazer Lock, Cummings Professor.
Hypothesis Testing I 2/8/12 More on bootstrapping Random chance
Inference: Neyman’s Repeated Sampling STA 320 Design and Analysis of Causal Studies Dr. Kari Lock Morgan and Dr. Fan Li Department of Statistical Science.
Statistics: Unlocking the Power of Data Lock 5 Hypothesis Testing: p-value STAT 250 Dr. Kari Lock Morgan SECTION 4.2 Randomization distribution p-value.
Models and Modeling in Introductory Statistics Robin H. Lock Burry Professor of Statistics St. Lawrence University 2012 Joint Statistics Meetings San Diego,
Launching into Inference: From Common Core to AP Statistics Daren Starnes The Lawrenceville School CMC South 2013.
A Fiddler on the Roof: Tradition vs. Modern Methods in Teaching Inference Patti Frazer Lock Robin H. Lock St. Lawrence University Joint Mathematics Meetings.
Stat Day 16 Observations (Topic 16 and Topic 14)
STAT 101 Dr. Kari Lock Morgan Exam 2 Review.
Connecting Simulation- Based Inference with Traditional Methods Kari Lock Morgan, Penn State Robin Lock, St. Lawrence University Patti Frazer Lock, St.
StatKey: Online Tools for Bootstrap Intervals and Randomization Tests Kari Lock Morgan Department of Statistical Science Duke University Joint work with.
Dr. Kari Lock Morgan Department of Statistics Penn State University Teaching the Common Core: Making Inferences and Justifying Conclusions ASA Webinar.
Starting Inference with Bootstraps and Randomizations Robin H. Lock, Burry Professor of Statistics St. Lawrence University Stat Chat Macalester College,
Using Simulation Methods to Introduce Statistical Inference Patti Frazer Lock Kari Lock Morgan Cummings Professor of Mathematics Assistant Professor of.
Building Conceptual Understanding of Statistical Inference with Lock 5 Dr. Kari Lock Morgan Department of Statistical Science Duke University Wake Forest.
Bootstrapping: Let Your Data Be Your Guide Robin H. Lock Burry Professor of Statistics St. Lawrence University MAA Seaway Section Meeting Hamilton College,
Introducing Inference with Simulation Methods; Implementation at Duke University Kari Lock Morgan Department of Statistical Science, Duke University
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Statistics: Unlocking the Power of Data Lock 5 Hypothesis Testing: p-value STAT 101 Dr. Kari Lock Morgan 9/25/12 SECTION 4.2 Randomization distribution.
Using Bootstrap Intervals and Randomization Tests to Enhance Conceptual Understanding in Introductory Statistics Kari Lock Morgan Department of Statistical.
Statistics: Unlocking the Power of Data Lock 5 Inference for Proportions STAT 250 Dr. Kari Lock Morgan Chapter 6.1, 6.2, 6.3, 6.7, 6.8, 6.9 Formulas for.
Introducing Inference with Bootstrap and Randomization Procedures Dennis Lock Statistics Education Meeting October 30,
Statistics: Unlocking the Power of Data Lock 5 Hypothesis Testing: Hypotheses STAT 101 Dr. Kari Lock Morgan SECTION 4.1 Statistical test Null and alternative.
Synthesis and Review 3/26/12 Multiple Comparisons Review of Concepts Review of Methods - Prezi Essential Synthesis 3 Professor Kari Lock Morgan Duke University.
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University
Understanding the P-value… Really! Kari Lock Morgan Department of Statistical Science, Duke University with Robin Lock, Patti Frazer.
Using Simulation Methods to Introduce Inference Kari Lock Morgan Duke University In collaboration with Robin Lock, Patti Frazer Lock, Eric Lock, Dennis.
Confidence Intervals: Bootstrap Distribution
Statistics: Unlocking the Power of Data Lock 5 Synthesis STAT 250 Dr. Kari Lock Morgan SECTIONS 4.4, 4.5 Connecting bootstrapping and randomization (4.4)
Using Lock5 Statistics: Unlocking the Power of Data
What Can We Do When Conditions Aren’t Met? Robin H. Lock, Burry Professor of Statistics St. Lawrence University BAPS at 2011 JSM Miami Beach, August 2011.
How to Handle Intervals in a Simulation-Based Curriculum? Robin Lock Burry Professor of Statistics St. Lawrence University 2015 Joint Statistics Meetings.
Statistics: Unlocking the Power of Data Lock 5 Afternoon Session Using Lock5 Statistics: Unlocking the Power of Data Patti Frazer Lock University of Kentucky.
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University
Statistics: Unlocking the Power of Data Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University University of Kentucky.
Statistics: Unlocking the Power of Data Lock 5 STAT 101 Dr. Kari Lock Morgan 9/18/12 Confidence Intervals: Bootstrap Distribution SECTIONS 3.3, 3.4 Bootstrap.
Introducing Inference with Simulation Methods; Implementation at Duke University Kari Lock Morgan Department of Statistical Science, Duke University
Using Randomization Methods to Build Conceptual Understanding of Statistical Inference: Day 2 Lock, Lock, Lock Morgan, Lock, and Lock MAA Minicourse- Joint.
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Confidence Intervals: Bootstrap Distribution
Introducing Inference with Bootstrapping and Randomization Kari Lock Morgan Department of Statistical Science, Duke University with.
Implementing a Randomization-Based Curriculum for Introductory Statistics Robin H. Lock, Burry Professor of Statistics St. Lawrence University Breakout.
Statistics: Unlocking the Power of Data Lock 5 Bootstrap Intervals Dr. Kari Lock Morgan PSU /12/14.
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University Canton, New York.
Statistics: Unlocking the Power of Data Lock 5 Exam 2 Review STAT 101 Dr. Kari Lock Morgan 11/13/12 Review of Chapters 5-9.
Using Bootstrapping and Randomization to Introduce Statistical Inference Robin H. Lock, Burry Professor of Statistics Patti Frazer Lock, Cummings Professor.
Give your data the boot: What is bootstrapping? and Why does it matter? Patti Frazer Lock and Robin H. Lock St. Lawrence University MAA Seaway Section.
Statistics: Unlocking the Power of Data Lock 5 STAT 101 Dr. Kari Lock Morgan 12/6/12 Synthesis Big Picture Essential Synthesis Bayesian Inference (continued)
Statistics: Unlocking the Power of Data Lock 5 Inference for Means STAT 250 Dr. Kari Lock Morgan Sections 6.4, 6.5, 6.6, 6.10, 6.11, 6.12, 6.13 t-distribution.
Statistics: Unlocking the Power of Data Lock 5 Normal Distribution STAT 250 Dr. Kari Lock Morgan Chapter 5 Normal distribution (5.1) Central limit theorem.
Synthesis and Review 2/20/12 Hypothesis Tests: the big picture Randomization distributions Connecting intervals and tests Review of major topics Open Q+A.
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Bootstraps and Scrambles: Letting a Dataset Speak for Itself Robin H. Lock Patti Frazer Lock ‘75 Burry Professor of Statistics Cummings Professor of MathematicsSt.
Statistics: Unlocking the Power of Data Lock 5 Hypothesis Testing: p-value STAT 250 Dr. Kari Lock Morgan SECTION 4.2 p-value.
Statistics: Unlocking the Power of Data Lock 5 Section 4.1 Introducing Hypothesis Tests.
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock, Lock, and Lock Minicourse – Joint Mathematics.
Connecting Intuitive Simulation-Based Inference to Traditional Methods
Using Simulation Methods to Introduce Inference
Using Simulation Methods to Introduce Inference
Teaching with Simulation-Based Inference, for Beginners
Presentation transcript:

Intuitive Introduction to the Important Ideas of Inference Robin Lock – St. Lawrence University Patti Frazer Lock – St. Lawrence University Kari Lock Morgan – Duke / Penn State Eric F. Lock – Duke / U Minnesota Dennis F. Lock – Iowa State / Miami Dolphins ICOTS9 Flagstaff, AZ July 2014

The Lock 5 Team Dennis Iowa State/ Miami Dolphins Kari Duke / Penn State Eric Duke / UMinn Robin & Patti St. Lawrence

Outline Estimating with confidence (Bootstrap) Understanding p-values (Randomization) Implementation Organization of simulation methods? Role for distribution-based methods? Textbook/software support?

U.S. Common Core Standards (Grades 9-12) Statistics: Making Inferences & Justifying Conclusions HSS-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. HSS-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. HSS-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. HSS-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. HSS-IC.B.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. Statistics: Making Inferences & Justifying Conclusions HSS-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. HSS-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. HSS-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. HSS-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. HSS-IC.B.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

Key concept: How much should we expect the sample means to vary just by random chance? Example #1: Body Temperatures Sample of body temperatures (in o F) for n=50 students (Shoemaker, JSE, 1996) Goal: Find an interval that is likely to contain the mean body temperature for all students Can we estimate this using ONLY data from this sample?

Traditional Inference 2. Which formula? 3. Calculate summary stats 6. Plug and chug 4. Find t * 5. df? OR t * = Interpret in context CI for a mean 1. Check conditions

Bootstrapping Basic Idea: Create simulated samples, based only the original sample data, to approximate the sampling distribution and standard error of the statistic. “Let your data be your guide.” Brad Efron Stanford University

Bootstrapping To create a bootstrap distribution: Assume the “population” is many, many copies of the original sample. Simulate many “new” samples from the population by sampling with replacement from the original sample. Compute the sample statistic for each bootstrap sample. “Let your data be your guide.” Brad Efron Stanford University

Original Sample (n=6) Finding a Bootstrap Sample A simulated “population” to sample from Bootstrap Sample (sample with replacement from the original sample)

Original Sample Bootstrap Sample Repeat 1,000’s of times!

Many times Original Sample Bootstrap Sample ●●●●●● Bootstrap Statistic Sample Statistic Bootstrap Statistic ●●●●●● Bootstrap Distribution We need technology! StatKey

StatKey Freely available web apps with no login required Runs in (almost) any browser (incl. smartphones/tablets) Google Chrome App available (no internet needed) Standalone or supplement to existing technology * ICOTS talk on StatKey: Session 9B, Thursday 7/17 at 10:55

Bootstrap Distribution for Body Temp Means

How do we get a CI from the bootstrap distribution? Method #1: Standard Error Find the standard error (SE) as the standard deviation of the bootstrap statistics Find an interval with

Bootstrap Distribution for Body Temp Means Standard Error

How do we get a CI from the bootstrap distribution? Method #1: Standard Error Find the standard error (SE) as the standard deviation of the bootstrap statistics Find an interval with Method #2: Percentile Interval For a 95% interval, find the endpoints that cut off 2.5% of the bootstrap means from each tail, leaving 95% in the middle

95% Confidence Interval Keep 95% in middle Chop 2.5% in each tail We are 95% sure that the mean body temperature for all students is between o F and o F

Bootstrap Confidence Intervals Version 1 (Statistic  2 SE): Great preparation for moving to traditional methods Version 2 (Percentiles): Great at building understanding of confidence intervals Same process works for different parameters

Why does the bootstrap work?

Sampling Distribution Population µ BUT, in practice we don’t see the “tree” or all of the “seeds” – we only have ONE seed

Bootstrap Distribution Bootstrap “Population” What can we do with just one seed? Grow a NEW tree! µ Chris Wild: Use the bootstrap errors that we CAN see to estimate the sampling errors that we CAN’T see.

Golden Rule of Bootstraps The bootstrap statistics are to the original statistic as the original statistic is to the population parameter.

Example #2: Sleep vs. Caffeine Volunteers shown a list of 25 words. Before recall: Randomly assign to either Sleep (1.5 hour nap) OR Caffeine (and awake) Measure number of words recalled. Does this provide convincing evidence that the mean number of words recalled after sleep is higher than after caffeine or could this difference be just due to random chance? Mednick, Cai, Kannady, and Drummond, “Comparing the Benefits of Caffeine, Naps and Palceboon Verbal, Motor and Perceptual Memory” Behavioural Brain Research (2008) nmeanstdev Sleep Caffeine

Example #2: Sleep vs. Caffeine µ = mean number of words recalled H 0 : μ S = μ C H a : μ S > μ C Is this a “significant” difference? How do we measure “significance”?...

P-value: The proportion of samples, when H 0 is true, that would give results as (or more) extreme as the original sample. Say what???? KEY IDEA

Traditional Inference 2. Which formula? 3. Calculate numbers and plug into formula 4. Chug with calculator 5. Which theoretical distribution? 6. df? 7. Find p-value < p-value < Check conditions 8. Interpret a decision

Create a randomization distribution by simulating many samples from the original data, assuming H 0 is true, and calculating the sample statistic for each new sample. Estimate p-value directly as the proportion of these randomization statistics that exceed the original sample statistic. Randomization Approach

Caffeine Sleep Number of words recalled To simulate samples under H 0 (no difference): Re-randomize the values into Sleep & Caffeine groups Original Sample

Randomization Approach Caffeine Sleep Number of words recalled To simulate samples under H 0 (no difference): Re-randomize the values into Sleep & Caffeine groups

Randomization Approach Number of words recalled Sleep Caffeine Repeat this process 1000’s of times to see how “unusual” is the original difference of 3.0. StatKey

p-value = proportion of samples, when H 0 is true, that are as (or more) extreme as the original sample. p-value

Implementation Issues What about traditional (distribution-based) methods? Intervals first or tests? One Crank or Two? Textbooks? Technology/Software?

How does everything fit together? We use simulation methods to build understanding of the key ideas of inference. We then cover traditional normal and t-based procedures as “short-cut formulas”. Students continue to see all the standard methods but with a deeper understanding of the meaning.

Intro Stat – Revise the Topics Descriptive Statistics – one and two samples Normal distributions Data production (samples/experiments) Sampling distributions (mean/proportion) Confidence intervals (means/proportions) Hypothesis tests (means/proportions) ANOVA for several means, Inference for regression, Chi-square tests Data production (samples/experiments) Bootstrap confidence intervals Randomization-based hypothesis tests Normal distributions Bootstrap confidence intervals Randomization-based hypothesis tests Descriptive Statistics – one and two samples

Transition to Traditional Inference Need to know: Formula for SE Conditions to use a “traditional” distribution

One Crank or Two? John Holcomb (ICOTS8) Crank #1: Reallocation Example: Scramble the sleep/caffeine labels in the word memory experiment Crank #2: Resample Example: Sample body temps with replacement to get bootstrap samples Example: Suppose we sampled 12 “nappers” and 12 “caffeine” drinkers to compare word memory...

Textbooks? Statistical Reasoning in Sports (WH Freeman) Tabor & Franklin Statistics: Unlocking the Power of Data (Wiley) Lock, Lock, Lock Morgan, Lock, Lock Statistical Thinking: A Simulation Approach to Modeling Uncertainty (Catalyst Press) Zieffler & Catalysts for Change Introduction to Statistical Investigations (Wiley) Tintle, Chance, Cobb, Rossman, Roy, Swanson and VanderStoep

Software? StatKey Rossman/Chance Applets VIT: Visual Inference Tools Chris Wild Mosaic (R package) Kaplan, Horton, Pruim Fathom/TinkerPlots Finzer, Konold

Thanks for Listening! Questions? Robin – Patti – Kari – Eric – Dennis – All –