Anion radical coupling
Plan methods for the formation of aryl-aryl bonds anionic cyclohydrogenation history mechanism applications
Selective formation of aryl-aryl bonds between reaction partners (no functionality other than C-H bonds at the carbon atom): transition metal catalyzed cross-coupling reactions oxidative dimerization of electron-rich arenes (Scholl, Kovacic and others) intramolecular oxidative dimerization (Müllen) oxidative photocyclization of stilbenes to phenanthrenes (Mallory reaction) thermal cyclodehydrogenations by flash vacuum pyrolysis anionic cyclodehydrogenation of aromatic hydrocarbons
Classic example of anionic cyclodehydrogenation: Oxidative cyclization of 1,10-binaphthyl (1) to perylene (2 ) M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358
Anion radical coupling as an unique method the highest efficiency in conversion 1,1’-binaphthyl to perylene alkali metals are used to induce oxidation
Classic example of anionic cyclodehydrogenation: Oxidative cyclization of 1,10-binaphthyl (1) to perylene (2 ) M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358
History first isolated by Miller mechanism discovered by accident in 1967 by Solodovnikov et al. H.Gilman, C.G.Brennen, J. Am. Chem. Soc. 1949, 71, 657 M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358
Definition Aromatic radical anion Ar + e - → Ar ●- Ar ●- + e - → Ar 2- N. L. Holy, Chem. Rev. 1974, 74, 243
General types of anion reactions
Reactivity of a radical anion Compound Electron affinity [eV] Naphthalene Triphenylene Phenantrhrene Anthracene 0,152 ± 0,016 0,284 ± 0,020 0,308 ± 0,024 0,552 ± 0,061 N. L. Holy, Chem. Rev. 1974, 74, 243
Mechanism M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358 The equilibrium constatnt depends on: nature of the metal hydrocarbon solvent temperature M + Ar → Ar ●- + M +
M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358
Examined conditions K (in an excess), THF, at 80 º C gave 73% yield Other conditions examined (metal, solvent, temperature) gave yelds of 10% or less: a) K, 1,2-dimethoxyethane, 80 º C b) K, diglyme, 80 º C c) K, toluene, 80 º C d) Na, THF, 66 º C e) Na, diglyme, 80 º C f) Na, TMEDA, 120 º C g) Na, toluene, 110 º C M. Rickhaus, A.P. Belanger, H. A. Wegner, L.T. Scott, J.Org.Chem. 2010, 75, 7358
Oxidative agent exposure to oxygene (small scale) elemental iodine Na 2 S 2 O 5 SO 2 S.H.Bossmann, H.Durr, M.R. Pokhrel, Synthesis 2005, 6, 907
SO 2 as an oxidative agent S. Hunig, I. Wehner, Synthesis 1989, 552
Applications P. Schlichting, U. Rohr, K. Müllen, J. Mater. Chem. 1998, 8, 2651
Applications
Reductive ring closure of helicenes A. Ayalon, M. Rabinovitz, Tetrahedron Lett. 1992, 33, 17, 2395
Applications Terrylene synthesis U.Scherf, K. Müllen, Synthesis 1992, 23
Summary formation of aryl-aryl bonds efficiency unique method oxidazing agent obscure mechanism
Thank you !!! Questions ???