1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Photodetachment microscopy in a magnetic field Christophe Blondel Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, université Paris-
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Microscopic structure and properties of superconductivity on the density wave background P. D. Grigoriev L. D. Landau Institute for Theoretical Physics,
Interacting charge and spin chains in high magnetic fields James S. Brooks, Florida State University, DMR [1] D. Graf et al., High Magnetic Field.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Stability analysis of metallic nanowires: Interplay of Rayleigh and Peierls Instabilities Daniel Urban and Hermann Grabertcond-mat/ Jellium model:
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Theory of the Quantum Mirage*
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
ORGANIC SUPERCONDUCTORS by Eugenio Gutierrez Joe Nowell Physics 335.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Fluctuation conductivity of thin films and nanowires near a parallel-
Nonlinear Conductivity in the FISDW states of the Organic Conductor T. Vuletić 1,2, P. Senzier 1, C. Pasquier 1, S. Tomić 2, D. Jérome 1 contact
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Some Igor Schegolev and Chernokolovka Recollections: Igor visited Gor’kov at the NHMFL in the early 90’s: Learned about “Igor” software.  -(BEDT-TTF)
Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Quantum Spin Hall Effect and Topological Insulator Weisong Tu Department of Physics and Astronomy University of Tennessee Instructor: Dr. George Siopsis.
Electron coherence in the presence of magnetic impurities
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Single -Particle and SDW Charge Dynamics In and : A Comparative Overview (TMTSF) 2 AsF 6 T.Vuletić 1, D.Herman 1, N.Biškup 1, M.Pinterić 1,2, A.Omerzu.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Emergent Nematic State in Iron-based Superconductors
Glassy dynamics near the two-dimensional metal-insulator transition Acknowledgments: NSF grants DMR , DMR ; IBM, NHMFL; V. Dobrosavljević,
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Charge pumping in mesoscopic systems coupled to a superconducting lead
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Chapter 7 in the textbook Introduction and Survey Current density:
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Igor Lukyanchuk Amiens University
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Routes for finding superconductors based on structural trends
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
Electrical resistance
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Analysis of proximity effects in S/N/F and F/S/F junctions
Presentation transcript:

1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier LPS, Orsay, (unité mixte de Recherche) CNRS-Paris XI, France R. Bennaceur LPMC, Faculté des Sciences de Tunis, Tunisia Interplay between SDW and superconductivity in the quasi-one organic superconductor (TMTSF) 2 ClO 4

2 Acknowledgments TheoryExperiments C. Bourbonnais (Sherbrooke) D. Jérome (Orsay) A. G. Lebed (Arizona) Y. Maeno (Kyoto) N. Joo (Orsay)

3 Why quasi-one organic superconductors? (TMTSF) 2 ClO 4 : an exotic organic conductor Effect of disorder on the interplay between Superconductivity and SDW Effect of a magnetic field: new field induced SDW (FISDW) phases

4 Why superconductors ? Uses for superconductors: Also as … Electric generator (99% more efficient than ordinary one) SQUID (Superconducting Quantum Interference Device): sensing weak magnetic field Military: antenna and in detecting mines (US NAVY) … IRM Accelerator LHC (CERN) Maglev in Japan: fast, safe and economic

5 The future of Superconductors

6 Why organic superconductors ? Dream: towards room temperature superconductors !!! Problems: difficulties to synthesize such materials until… Little’s Proposition (1964): look for organic conductors with one dimensional character to get high Tc !!!

7 Why organic superconductors ? But: there are still open questions !!!  1979: discovery of organic superconductivity in a quasi-one dimensional salt (TMTSF) 2 PF 6 (D. Jérome’s group) …then in Bechgaard salts denoted by (TMTSF) 2 X (X=PF 6 -, ClO 4 - …) Interplay between SC/ SDW : coexistence or competition? SDW SC BUT : T C =1.2 K (so low !!!) a complete laboratory for physicists intensive study

8 Needle like Crystal structure of (TMTSF) 2 X TMTSF X TMTSF=tétraméthyl-tétraséléna-fulvalène X= anion: Br -, PF 6 - ; ClO 4 - … c b a

9 a b c Organic chains of TMTSF molecules Conducting planes tbtb tata Key parameters of (TMTSF) 2 X tctc t’ b t c « t b « t a  c «  b «  a quasi-1D conductors

10 1D LL 2D FL Phase diagram of Bechgaard salts AFSC T. Vuletic, et al. Eur. Phys. J. B 25, 319 (2002) (TMTSF) 2 ClO 4 is superconducting at ambient pressure (T c = 1.2 K) ClO 4

11 (TMTSF) 2 ClO 4 : What makes it so special ? TMTSF ClO4 a b c ClO4 anions are noncentrosymmetric 2 possible orientations or

12 (TMTSF) 2 ClO 4 : anion ordering Anion ordering in (TMTSF) 2 ClO 4 ClO 4 TMTSF b c t b Slowly cooled sample (relaxed): ClO4 anions order along b direction at T AO = 24 K Rapidly cooled sample (quenched): ClO4 anions disordered ! V = 0 Periodic potential: V (y) =V cos(  /b y) V: anion potential

13 2V Fermi surface of (TMTSF) 2 ClO 4 k ┴ k Fermi surface of (TMTSF) 2 X without anion ordering Dispersion relation of relaxed (TMTSF) 2 ClO 4 Two-band energy spectrum BB A A

14 Joo et al., Euro. Phys. Lett. 72, 645 (2005) Effect of cooling rate In the quenched samples: pure magnetic state (SDW) Puzzles !!! SC SDW relaxed samples (slowly cooled) : Superconducting (SC) For the intermediate cooling rate: both SC and magnetism.

15 T SC SC/ SDW T SDW Cooling rate T effect of cooling rate: generic phase diagram metal Pure SC Pure SDW

16 Model : Interplay of superconductivity and magnetic phases Anion ordering two band energy spectrum  (k) k A B kFAkFA kFBkFB EgEg Bands separated by gap Eg

17 Method: perturbative renormalization group theory (Bourbonnais et al.) EgEg tbtb system set of coupled chains singlet superconductivity (SSc) CDW SDW triplet superconductivity(tSc)

18 Scattering processes: (g-ology model) g (1) processesg (2) processes m m m m m m m m m m m m m m m m m m mm Most divergent the most dominant fluctuation.

19 E g = 5 K Rapid cooling E g = 8 K Intermediate cooling E g = 15 K Slow cooling Scaling flows of the most divergent t b = 300 K, E F = 2000 K, T cross = 170 K, = 0.6 Singlet SC Coexisting singlet SC/SDW Pure SDW

20 Phase diagram pure singlet SC (SCs) phase (SCs + SDW) pure SDW Limits RG calculations: Is there coexistence or segregation between SC and SDW ? Cooling rate S. Haddad et al. to appear in J. Low Temp. Phys.

21 Experiments Phase segregation ! Ordered ClO 4 region SC SDW Disordered ClO4 region decrease cooling rate (decrease disorder) Next step: compare free energies (pure SC, pure SDW, SC+SDW)

22 Effect of a transverse magnetic field H a b c Organic chains Cascade of field-induced SDW (FISDW) phases

23

24 Other puzzle: Effect of a high magnetic field Generic Temperature field phase diagram in the absence of anion ordering: Temperature (K) N=0 N=1 2 3 metal Cascade of FISDW phases :already explained within the Quantized nesting model (Lebed, Gor’kov, Maki, Héritier, Montambaux, Lederer). Magnetic field (T) SDW phase inside an original SDW state !!! Temperature field phase diagram in the (TMTSF) 2 ClO 4 (Chung et al. 2000) SDW I SDW III SDW II SDW IV ? ? ? Ok-Hee Chung et al., PRB 61 (2000)

Temperature (K) N=0 N=1 2 3 metal Magnetic field (T) High field phases correspond lowest N values Focus on N=0 and N=1 phases

26 G=eHb/hc, b interchain distance In the presence of magnetic field: effective anion gap

27 q1q1 Intraband nesting: N=0 phase Osada et al. (Phys. Rev. Lett. 1992) Interband nesting: N=1 phase  (k)  k AB N=0 Tow nesting vectors N=0 Tow nesting vectors  k AB N=1 one nesting vector N=1 one nesting vector

28 Instability criteria N=0 FISDW phase: Generalized Stoner Criterion Term describing the overlap of the tow SDW components appearing on the two bands Intraband term N=1 FISDW phase: standard Stoner Criterion MFT + RG

29 Thermodynamics: Competition between the N=0 and the N=1 phase F T F1F1 F0F0 T1T1 T0T0 T*1T*1

30 Temperature-field phase diagram Experiments (Chung et al. 2000) ? ? ? Our model S. Haddad et al. Phys. Rev. Lett., 89, (2002) S. Haddad et al. Phys. Rev B, 72, (2005)

31 Effect of a parallel magnetic field H a b c Organic chains a Confinement in the (a,b) plane b Free of bird flu !

32 Experiment (Danner et al. 1997) Our model submitted to Eur. Phys. J. B Joo et al. 2006

33 Quantum mechanical calculation Layer index

34 Other models in competition with our !!! Index layer Probability in transverse direction A. G. Lebed, Phys. Rev. Lett. (2005) But, does not explain the resistance behavior

35 What should be next ?  symmetry of the gap in (TMTSF)2ClO4? triplet or singlet ?  Interplay between Superconductivity and SDW : coexistence or competition ? References N. Matsunaga et al. J. Low Temp. Phys. 117, 1735 (1999) A.J. Greer et al. Physica C 400, 59 (2003) N. Joo et al., cond-mat/ S. K. McKernan et al., P.R.L 75, 1630 (1995) O. H. Chung et al., P.R.B 61, (2000) J. Moser, Ph. D. thesis, Orsay (France) (1999) (unpublished) C. Bourbonnais and L. G. Caron, Int. J. Mod. Phys. B, 5, 1033 (1991) J. Kishine and K. Yonemitsu, J. Phys. Soc. Jpn. 67, 1714 (1998) T. Osada et al. P.R.L. 77, 5261 (1996) S. Uji et al., P.R.B 53, (1996) H. Yoshino et al., Synth. Met , 55 (2003) H. I. Ha et al., cond-mat/ A.G. Lebed et al., P.R.L. 93, (2004) A.G. Lebed and P. Bak, P.R.B 40, R11433 (1989) T. Osada et al., P.R.L. 69, 1117 (1992) S. Haddad et al., P.R.B 72, (2005) SDW Sc