Acid-Base Theories Arrhenius Theory Svante Arrenhius (1857-1927) Acid: Substance that produces H + in water. Base: Substance that produces OH -1 in water.

Slides:



Advertisements
Similar presentations
Acids and Bases Acid-Base chemistry important in our everyday lives
Advertisements

CHAPTER 9 CONCURRENT ENROLLMENT. ACIDS AND BASES WEAK ACIDS AND BASES ONLY A FEW IONS ARE FORMED DEFINITIONS –Arrhenius - Acid contains H + ions and Bases.
Chapter 16: Acids and bases
Acid-Base Equilibria 4/11/2017.
Updates Assignment 05 is is due Monday, Mar. 05 (in class) Midterm 2 is Thurs., March 15 –Huggins 10, 7-8pm –For conflicts: ELL 221, 6-7pm (must arrange.
Big-picture perspective: Acid-base chemistry is highly diverse, encompassing not only the traditional H + /OH – chemistry that characterizes aqueous solutions.
4 4-1 Organic Chemistry William H. Brown & Christopher S. Foote.
Prentice Hall © 2003Chapter 16 Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 16 Acid-Base Equilibria. The H + ion is a proton with no electrons. In water, the H + (aq) binds to water to form the H 3 O + (aq) ion, the hydronium.
CHAPTER 16 ACIDS AND BASES. I. INTRODUCTION A) The Oldest Theory is the Arrhenius Theory 1) You should be familiar with this one from your earlier chemistry.
Chapter 17: Acids and Bases Acid-base reactions involve proton (hydrogen ion, H + ) transfer The generalization of the Arrhenius definition of acids and.
Chapter 14 Preview Lesson Starter Objectives Acids Bases
Acids and Bases Entry task: Feb 4 th Monday Sign off on Ch. 16 sec
Chapter 17. Acids are substances that increase the concentration of hydrogen ions in solution. Bases are substances that increases the concentration of.
Chapter 6 Lecture 1 Acid-Base Concepts I.Unifying Concepts A.The Acid-Base Concept 1)There are many acid-base definitions, each at times useful 2)Acid-Base.
Acid-Base and Donor-Acceptor Chemistry
Unit 4 Acid-base and donor-acceptor chemistry Hard and soft acids and bases Miessler/Tarr Ch. 6 Graduate Center Advanced Inorganic Chemistry (Fall 2010)
Acid-base and donor-acceptor chemistry Hard and soft acids and bases.
1 Acids and Bases Chapter Why are lemons sour?
Extreme cases: ionic compounds (LiF) Li transfers e - to F, forming Li + and F -. This means it occupies a MO centered on the F A1A1 A1A1 orbitals.
A.P. Chemistry Chapter 14 Acid- Base Chemistry Arrhenius Acid- an acid is any substance that dissolves in water to produce H + (H 3 O + ) ions Base-
Acids and Bases Topics to be covered: Definitions of acids and bases; Bronsted’s conjugate acid-base pairs concept; Determination of [H 3 O + ], [OH -
Chapter 17 Acids and Bases. Acids, Bases, and Matter Classification of Matter.
Chapter 16 Acids and Bases.
Acids and Bases © 2009, Prentice-Hall, Inc. Chapter 16 Acids and Bases John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The.
Chapter 16 Acid–Base Equilibria Lecture Presentation Dr. Subhash C Goel South GA State College Douglas, GA © 2012 Pearson Education, Inc.
Chapter 16 Acid–Base Equilibria
Chapter 15:Aqueous Equilibria Renee Y. Becker Valencia Community College.
Chapter 14 Acids and Bases. Acid/Base Theories Arrhenius Theory –Acids produce H + ions in solution –Bases produce OH - ions in solution –Downside Must.
Unit 6 - Chpt 14&15 - Acid/Base Acid basics, strengths, etc. pH scale, calculations Base basics Polyprotic acids, Acid/Base properties of salts, hydrolysis,
Acids and Bases  Arrhenius ◦ Acid:Substance that, when dissolved in water, increases the concentration of hydrogen ions. ◦ Base:Substance that, when dissolved.
Prentice Hall ©2004 Chapter 14 Aqueous Equilibria: Acids and Bases.
Chapter 1 An Introduction to Organic Reactions Nabila Al- Jaber
Inorganic chemistry B.Sc III
14.1 Intro to Acids and Bases 14.2 Acid Strength 14.3 pH Scale
What are acids and bases?
Reactions in Solution The most important substance on earth is water. In chemistry, water is necessary for many reactions to take place. Table salt (NaCl)
1 CHAPTER 13 Acids & Bases. 2 Properties of Aqueous Solutions of Acids & Bases n Acidic properties  taste sour  change the colors of indicators  turn.
Chapter 17 – Chemistry of Acids and Bases
Acid-Base Equilibria. Acids Bases Sour taste React with active metals to release hydrogen gas Change the color of indicators Bitter taste Feel slippery.
Chemical Reactions Chapter Acid and Base Reactions  Acids and Bases acids produce carbon dioxide when added to a metal carbonate acids.
ACIDS & BASES Arrhenius Theory 1. in aqueous solution 2. Acid: produces H + 3. Base: produces OH -
William Brown Thomas Poon Chapter Two Acids and Bases.
Acid Base Equilibrium CH 16. Some Definitions Arrhenius Acid:Substance that, when dissolved in water, increases the concentration of hydrogen ions. Base:Substance.
Acids and Bases Chapter 16 Acids and Bases. Acids and Bases Some Definitions Arrhenius  ________________:Substance that, when dissolved in water, increases.
Makeup midquarter exams Wed., Mar 9 5:30-7:30 pm 131 Hitchcock Hall You MUST Sign up in 100 CE Please do so as soon as possible.
Nearly all salts are strong electrolytes. Therefore, salts exist entirely of ions in solution. Acid-base properties of salts are a consequence of the reaction.
Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Acids produce hydrogen ions in aqueous solution.  H 2 SO 4, HCl, HC 2 H 3 O 2 Bases.
Acids 1.Aqueous solutions of acids have a sour taste. 2.Acids change the color of acid-base indicators. 3.Some acids react with active metals and release.
Arrhenius Definition An acid is a substance that increases the hydrogen (hydronium) concentration in a water solution.  HCl(aq) H + (aq) + Cl -
Several concepts of acid-base theory: The Arrhenius concept The Bronsted-Lowry concept The Lewis concept.
Chapter 14 Acids and Bases. Chapter 14 Table of Contents Copyright © Cengage Learning. All rights reserved The Nature of Acids and Bases 14.2Acid.
Acids, Bases, and Acid-Base Equilibria. Acid-Base Theories and Relative Strengths Arrhenius Theory of acids and bases acid – produces H + ions base –
Acids and Bases. Acids, Bases and Equilibrium When an acid is dissolved in water, the H + ion (proton) produced by the acid combines with water to produce.
8–1 John A. Schreifels Chemistry 212 Chapter 16-1 Chapter 16 Acids and Bases.
Acids and Bases Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to.
© Houghton Mifflin Harcourt Publishing Company Preview Lesson Starter Objectives Acids Bases Arrhenius Acids and Bases Chapter 14.
CHE1102, Chapter 15 Learn, 1 Chapter 15 Acids and Bases, A Molecular Look.
  Acids  Produce H + ions when dissolved in water  Ionize into H + ions and negative ion  (Ex. HCl, HBr)  Bases  Produce OH - ions when dissolved.
Acids and bases in Inorganic Chemistry By the way: You will be allowed to bring molecular modelling kits into exams. You can find a link to the retailer’s.
16 Reactions of inorganic compounds in aqueous solution 16.1 Lewis acids and bases 16.2 Ligand substitution reactions 16.3 Summary: Acid-Base and substitution.
CHAPTER 16: ACID BASE EQUILIBRIA Wasilla High School
Essential Organic Chemistry
Unit 17 Acids and Bases Chapter 14. What is the Arrhenius concept? Acids produce H ions in aqueous solution while bases produce hydroxide ions Originally.
Chapter 15 Acids and Bases, A Molecular Look
Section 1 Properties of Acids and Bases
Reactions involving Acids, Bases, & Salts
Acid-Base and Donor-Acceptor Chemistry
Acid-Base and Donor-Acceptor Chemistry
Chapter 17: Acids and Bases
Presentation transcript:

Acid-Base Theories

Arrhenius Theory Svante Arrenhius ( ) Acid: Substance that produces H + in water. Base: Substance that produces OH -1 in water. HCl (aq)  H + + Cl - produces H + in water NH 3(aq)  NH OH - produces OH- in water Although NH 3 does not contain OH -, hydroxide ions form when added to water. Arrhenius acid and base neutralize each other to produce salt and water: HCl (aq) + NaOH (aq)  NaCl (aq) + H 2 O) (l) H + (aq) + OH - (aq)  H 2 O (l)

Bronsted/Lowry Theory Johannes Bronsted ( ) Thomas Lowry ( ) Acid: Substance that can donate proton (H + ). Base: Substance that can accept proton (must contain lone pair of electrons). HCl + NH 3  NH Cl - Acid base CA CB Acids may be cations, neutral molecules, or anions, while bases may be anions or neutral molecules. Just as a reduction must always accompany an oxidation, a proton donor (acid) must accompany a proton acceptor (base). Once an acid transfers its proton it becomes the conjugate base (CB) and once a base accepts the proton it becomes the conjugate acid (CA). Since protons are always transferred in the Arrenhius concept, all Arrhenius acid/base reactions are also Bronsted-Lowry acid/base reactions. But if water is not involved (HCl & NH 3 ), the reaction can be explained by Bronsted/Lowry concept and not Arrenhius.

Solvent system concept of acids and bases: Acid= cation of solvent via autodissociation Base = anion of the solvent by autodissociation. Solutes that increase the concentration of the cation of the solvent are considered acids and soultes that increase the concentration of the anion are considered bases The solvent must be able to behave as both an acid and a base (amphoteric) 2 H 2 O  OH - + H 3 O + H 2 SO 4 + H 2 O  H 3 O + + HSO 4 - H 2 SO 4 is an acid 2BrF 3  BrF BrF 4 - SbF 5 + BrF 3  BrF SbF 6 - SbF 5 is an acid KF + BrF 3  BrF K + KF is a base

Lewis Theory Gilbert Lewis ( ) Acid: Substance that can accept a pair of electrons from another atom to form a new bond. Base: Substance that can donate a pair of electrons to another atom to form a new bond. The product of Lewis acid-base reaction referred to as adduct. The proton itself can act as Lewis acid. Lewis expands acid/base reactions to include many substances without H in formula. F 3 B + NH 3  F 3 B:NH 3

Chapter 6 p166

Chapter 6 p169

Which theories can explain the following? X: - + Y +  Y:X HI + H 2 O  H 3 O + + I - HI + NH 3  NH I - I 2 + NH 3  NH 3 I + + I - I 2 + Cl -  ICl + I -

The lone pair in the HOMO of the ammonia molecule combines with the empty LUMO of the BF 3, which has very large, empty orbital lobes on boron, to form the adduct. The B-F bonds in the product are bent away from the ammonia into a nearly tetrahedral geometry around the boron Lewis Concept

Boron trifluoride-diethyl ether adduct Lone pair on the oxygen of the diethyl ether are attached to the boron. The result is that one of the lone pairs bonds to the boron, changing the geometry around B from planar to tetrahedral. As a result, BF 3, with a boiling point of o C, and diethyl ether, with a boiling point of 34.5 o C, form an adduct of 125 – 126 o C. Lewis acid-base adducts involving metal ions are called coordination compounds. Ag :NH 3  [H 3 N:Ag:NH 3 ] +

Frontier orbitals and acid-base reactions

In most acid-base reactions, a HOMO-LUMO combination form new HOMO and LUMO of the product. Orbitals whose shapes allow significant overlap and whose energies are similar form useful bonding and antibonding orbitals. On the other hand, if the orbital combinations have no useful overlap, no net bonding is possible and they can not form acid-base product. Even when the orbital shapes match, several reactions may be possible, depending on the relative energies. A single species can act as an oxidant, an acid, a base or a reductant, depending on the other reactant HOMO-LUMO interactions

1.2H 2 O + Ca  Ca OH - + H 2 water as oxidant 2. nH 2 O + Cl -  [Cl(H 2 O) n ]- water as acid 3. 6H 2 O + Mg 2+  [Mg(H 2 O)6] 2+ water as base 4. 2H 2 O + 2F 2  4F - + 4H + + O 2 water as reductant A base has an electron pair in a HOMO of suitable symmetry to interact with the LUMO of the acid. The better the energy match between the base’s HOMO and the acid’s LUMO, the stronger the interaction.

The lowest orbital is distinctly bonding, with all three component orbitals contributing and no nodes between the atoms. The middle (HOMO) orbitals is essentially nobonding, with nodes through each of the nuclei. The highest energy orbital (LUMO) is antibonding, with nodes between each pair of atoms 4 nodes 3 nodes 2 nodes Hydrogen bonding

For unsymmetrical H- bonding B + HA  BHA, the pattern is similar

Electronic spectra Charge transfer: the transition transfers an electron from an orbital that is primarily of donor composition to one that is primarily of acceptor composition I2  Donor  [I2] -  [Donor] +

Hard and Soft Acid and Bases Ag F(s) + H 2 O  Ag + (ag) + F - (aq) Ksp = 205 Ag Cl(s) + H 2 O  Ag + (ag) + Cl - (aq) Ksp = 1.8 x Ag Br(s) + H 2 O  Ag + (ag) + Br - (aq) Ksp = 5.2 x Ag I(s) + H 2 O  Ag + (ag) + I - (aq) Ksp = 8.3 x Solvation of the ions is a factor in these reactions, with fluoride ion being much strongly solvated than the other anions. 2.Related to HSAB in which iodide is much softer (more polarizable) than the others and interacts more strongly with silver ions, a soft cation. The result is a more covalent bond.

Colors AgI yellow AgBr slightly yellow AgCl and AgF white Color depends on the difference in energy between occupied and unoccupied orbitals. A large difference results in absorption in the ultraviolet region of the spectrum; a smaller difference in energy levels moves the absorption into the visible region. Compounds absorbing violet appear to be yellow; as the absorption moves toward lower energy, the color shifts and become more intense. Black indicates very broad and very strong absorption. Color and low solubility typically go with soft-soft interactions; colorless compounds and high solubility generally go with hard- hard interactions.

Color and low solubility typically go with soft-soft interactions; colorless compounds and high solubility generally go with hard- hard interactions, although some hard-hard combination have low solubilities. LiBr> LiCl > LiI > LiF The solubilities show a strong hard-hard interaction in LiF that overcomes the solvation of water, but the weaker hard-soft interactions of the other halides are not strong enough to prevent solvation and these halides are more soluble than LiF.

Fajan's Rules (Polarization) Polarization will be increased by:- 1. High charge and small size of the cation Ionic potential ?Z + /r + (= polarizing power) 2. High charge and large size of the anion The polarizability of an anion is related to the deformability of its electron cloud (i.e. its "softness") 3. An incomplete valence shell electron configuration noble gas configuration of the cation better shielding less polarizing power i.e. charge factor in (1) should be effective nuclear charge e.g. Hg 2+ (r + = 102 pm) is more polarising than Ca 2+ (r + = 100 pm)

Four rules can be summarized: 1.For a given cation, covalent character increases with increase in size of the anion. 2.For a given anion, covalent character increases with decrease in size of the cation. 3.Covalent character increase with increasing charge on either ion. 4.Covalent character is greater for cations with nonnoble gas electronic configuration. Q1. Ag 2 S is much less soluble than Ag 2 O A1. Rule 1: S 2- is much larger than O 2- Q2. Fe(OH) 3 is much less soluble than Fe(OH) 2 A2. Rule 3: Fe 3+ has a larger charge than Fe 2+

These rules are helpful in predicting behavior of specific cation-anion interaction, but not enough 1.Li series does not fit 2.Solubility MgCO 3 > CaCO 3 >SrCO 3 >BaCO 3 Rule 2 predicts the reverse of the order. The difference lies in the aquation of the metal ions. Mg 2+ (small with higher charge density) attracts water molecules much more strongly than the others, with Ba 2+ (large with smaller charge density) the least strongly solvated.

Ahrland, Chatt and Davies: Class (a) ions: Most metals Class (b) ions: Cu 2+, Pd 2+, Ag +, Pt 2+, Au +, Hg 2 2+, Hg 2+, Tl +, Tl 3+, Pb 2+, and heavier transition metal ions

The class (b) ions form halides whose solubility is in the order F - > Cl - > Br - > I -. The solubility of Class (a) halide is in the reverse order. The calss (b) metals ions also have a larger enthalpy of reaction with P donor than with N donor, again the reverse order of the Class (a) metal ion recations. Class (b) – having d electrons available for  bonding Tl(III) show stronger Class (b) character than Tl(I) because Tl(I) has two 6s electrons that screen the 5d electrons and keep them form being fully available for  bonding

Pearson’s Principle: Hard Lewis acids prefer to bind to hard Lewis bases; soft Lewis acids prefer to bind to soft Lewis bases Class (a)– hard acids Class (b)– soft acids

Hard and Soft Acids and Bases (HSAB) Let A be a Lewis acid, and B a base Measure log K for the reaction A + B  AB If for B = halide, the order of log K is I – > Br – > Cl – > F – then A is called a soft acid If for B = halide, the order of log K is I – < Br – < Cl – < F – then A is called a hard acid

Hard metal ions form their most stable complexes with Hard Bases Hard Bases: contain the smaller electronegative atoms, especially O, N, F and Cl. The bonding between a Hard Lewis Acid and a Hard Lewis Base is predominantly ionic

Soft Bases: contain the larger, more polarisable and less electronegative atoms, especially S, Se, P, C and As. The bonding between a Soft Lewis Acid and a Soft Lewis Base is predominantly covalent Soft metal ions form their most stable complexes with Soft Bases

Chapter 6 p183

Chapter 6 p184

The smaller drop in energy in the hard-hard case does not indicate small interaction. The hard-hard interaction depends on a longer range electrostatic force, and this interaction can be quite strong. Many comparisons of hard-hard and soft-soft interactions indicates that the hard-hard combination is stronger and is the primary driving force for the reaction.

Quantitative measure Absolute hardness  = (I –A)/2 Mulliken’s definition of electronegativity  = (I + A)/2 Softness  = 1/ 

Chapter 6 p189

Chapter 6 p191

Measurement of Acid-Base Interactions 1.Change in boiling points 2.Direct calorimetric methods or temperature dependent of equivalent constants can be used to measure enthalpies and entropies 3.Gas phase measurements of the formation of protonated species 4.IR 5.NMR 6.UV-vis

Thermodynamic measurements The enthalpy and entropy of ionization of a weak acid HA can be found by measuring (1) the enthalpy of reaction with NaOH, (2) the enthalpy of reaction of a strong acid (HCl) with NaOH and the equivalent constant for dissociation of the acid. (1) HA + OH-  A- + H 2 O  H 1 o (2) H 3 O + + OH -  2H 2 O  H 2 o Ka (3) HA + H 2 O ⇋ H 3 O + A - K a  H 3 o  H 3 o =  H 1 o -  H 2 o  S 3 o =  S 1 o -  S 2 o  G 3 o = -RTlnK a =  H 3 o - T  S 3 o Ln K a = -  H 3 o /RT +  S 3 o /R On a plot of K a vs 1/T, the slope is -  H 3 o /R and the intercept is  S 3 o /R

Chapter 6 p193

Proton Affinity BH + (g)  B (g) + H + proton affinity =  H A large proton affinity means it is difficult yo remove the hydrogen ion; this means that B is a strong base and BH + is a weak acid. 1. The alkali metal hydroxide, which are of equal basicity in aqueous solution have gas phase basicities in the order LiOH < NaOH < KOH <CsOH. This order matches the increase in the electron-releasing ability of the cation in these hydroxides. 2. Pyridine and analine are stronger base the ammonia in the gas phase, but they are weaker than ammonia in aqueous solution., presumably because the interaction of the ammonium ion with water is more favorable than the interaction with pyridinium or anilinium ions,

In binary acids, such as the hydrogen halides, the strength of the acid is determined by the strength of the H–X bond. For a series such as the hydrogen halides, the strength of the H–X bond decreases as the size of X increases. In terms of acidic strength, HF < HCl < HBr < HI As we move from left to right across a row in the periodic table, there is less change in bond strength. In this case, what determines acid strength is the polarity of the H- X bond. The electronegativity of elements increases from left to right across a period in the periodic table. As the electronegativity of X increases, the polarity of the H- X bond increases, increasing acidity. Acidity of the second row hydrides varies as CH 4 < NH 3 < H 2 O < HF

Chapter 6 p195

Inductive effects An atom like fluorine which can pull the bonding pair away from the atom it is attached to is said to have a negative inductive effect. Most atoms that you will come across have a negative inductive effect when they are attached to a carbon atom, because they are mostly more electronegative than carbon. You will come across some groups of atoms which have a slight positive inductive effect - they "push" electrons towards the carbon they are attached to, making it slightly negative. Inductive effects are sometimes given symbols: -I (a negative inductive effect) and +I (a positive inductive effect).

Inductive effects (electron releasing and withdrawing) PF 3 is a much weaker base than PH 3 Base strength NMe 3 > NHMe 2 > NH 2 Me > NH 3 But the acid strength BF 3 < BCl 3 ≤ BBr 3 BF 3 and BCl 3 have significant  bonding that increase the electron density on B

EffectAcidBaseExamples strengthen weaken releasing by inductive effect (+I) weaken strengthen Electron withdrawing by inductive effect (-I) electron Inductive Effect

Many bases contain the OH - ion, but O–H groups are found in acids as well. Whether an OH compound is a base or an acid depends on whether the OH groups are combined with a metal or a nonmetal. For instance, sodium is a metal; NaOH is a base. Chlorine is a nonmetal; HClO is an acid. Acids that contain one or more O–H bonds are called oxyacids. Strength of Oxyacids The strength of an oxyacid depends on the electronegativity of the central nonmetal to which the OH groups are bound and on the number of oxygen atoms bound to the central nonmetal atom. For a series of oxyacids with the same number of oxygen atoms, the acidity increases with the electronegativity of the nonmetal. The table below gives such a series and the corresponding Ka values.

For a series of acids with the same central nonmetal atom, the acidity increases with the number of oxygen atoms bound to the central atom. (This also relates increasing acidity to increasing oxidation number on the central atom.)

Oxyacid Strength More electronegative E, more ionic O-H bond, stronger acid –H 2 SO 4 > H 3 PO 4 –HNO 3 > H 2 CO 3 Less electronegative E, O-H more covalent, E-O more ionic and more likely to beak in water –Which bond do you expect to ionize in NaOH in water? H-O-E-

More oxygens on central atom –Withdraw e - from O-E bond, making H-O more ionic –Negative charge spread out over larger – anion, reducing charge density, reducing attraction for H + More oxygens, stronger acid Oxyacid Strength H-O-E- O O O

Oxyacid Strength H 2 SO 4 > H 2 SO 3 HNO 3 > HNO 2 HClO 4 > HClO 3 > HClO 2 > HClO

Acidity of cations in aqueous solution Many positive ions exhibit acidic behavior in solution. In general, metal ions with large charges and smaller radii are stronger acid.

Solubility of the metal hydroxide is a measure of cation acidity. The stronger the acid, the less soluble the hydroxide

Steric effect H. C. Brown: Molecules have F (front) strain and B strain (back) strain depending on whether the bulky groups interfere directly with the approach of an acid and a base to each other. He also called effects from electronic differences within similar molecules I (internal) strain.

Gas phase measurements of proton affinity: Me 3 N > Me 2 NH > MeNH 2 > NH 3, on the basis of electron donation by the methyl groups and resulting increased electron density and basicity of the nitrogen. When larger acid are used, the order changes: (B strain)

Solvation and acid-base strength In aqueous solution: Basicity : Me 2 NH > MeNH 2 > Me 3 N > NH 3 Et 2 NH > EtNH 2 = Et 3 N > NH 3 Solvation energies for the reaction R n H 4-n N + (g) + H 2 O  R n H 4-n N + (aq) are in the order RNH 3 + > R 2 NH 2 + > R 3 NH + Solvation is dependent on the number of H atoms available for H- bonding to water to form H-O---H-N H-bonds.. With fewer H atoms for H-bonding, the more highly substituted molecules are less basic.

Nonaqueous solvents and acid-base strength HOAc + H 2 O ⇋ H 3 O + + OAc - (about 1.3 % in 0.1M solution ) HCl + H 2 O ⇋ H 3 O + + Cl - ( 100 % in 0.1M solution) NH 3 + H 2 O ⇋ NH OH - (about 1.3 % in 0.1M solution ) Na 2 O + H 2 O ⇋ 2Na + + 2OH - ( 100 % in 0.1M solution) Water is amphoteric. The strongest acid possible in water is H 3 O + and the strongest base is OH -. In glacial acetic acid solvent (100 % acetic acid) only the strongest acids can force another H ion onto the acetic acid molecule, but acetic acid will react readily with any base, forming the conjugate acid of the base and the acetic ion: H 2 SO4 + HOAc ⇋ H 2 OAc+ + HSO4 - NH 3 + HOAc ⇋ NH OAc - The strongest base possible in pure acetic acid is the acetate ion. Any stronger base reacts with acetic acid solvent to form acetate ion. OH - + HOAc -  H 2 O + OAc -

Leveling effect- in which the acids or bases are brought down to the limiting conjugate acid or base of the solvent Effect by which all acids stronger than the acid that is characteristic of the solvent react with solvent to produce that acid; similar statement applies to bases. The strongest acid (base) that can exist in a given solvent is the acid (base) characteristic of the solvent. In acetic acid, the acid strength is in the order HClO 4 > HCl > H 2 SO 4 > HNO 3

Superacids – Acid solutions more acidic than sulfuric acid are called superacid. For which George Olah won the Nobel prize in Chemistry in The acidity is measured by the Hammett acidity functions H o = pK BH + - log[BH + ]/[B]. Where B and BH + are a nitroaniline indicator and its conjugate acid. The stronger the acid, the more negative its H o value.