Topic 11: Chemical Bond Formation LECTURE SLIDES Valence electrons Ionic Bonding Covalent Bonding Lewis Structures Acid, Anion Relationships Resonance.

Slides:



Advertisements
Similar presentations
BONDING Ch 8 & 9 – Honors Chemistry General Rule of Thumb:
Advertisements

Bonding Unit Today we will: -Define Ionic, and Covalent Bonding -Discuss ionic and covalent properties -Learn to draw Lewis Structures -Be Chemistry Match.
Chemical Bonds.
1 CHAPTER 7 Chemical Bonding. 2 Chapter Goals 1. Lewis Dot Formulas of Atoms Ionic Bonding 2. Formation of Ionic Compounds Covalent Bonding 3. Formation.
Chemical Bonding.
Copyright © Houghton Mifflin Company. All rights reserved. 12 | 1 Chemical Bonds Forces that hold atoms together Ionic bonds: the forces of attraction.
1 CHEMICAL BONDING w/ Emch Cocaine. 2 Chemical Bonding Problems and questions — How is a molecule or polyatomic ion held together? What’s the difference.
Lecture 21 © slg CHM 151 Lewis Structures: Molecules Ions Oxy Acids Resonance Structures TOPICS:
Lecture 22 © slg CHM 151 RESONANCE OCTET VIOLATORS FORMAL CHARGES MOLECULAR SHAPES TOPICS:
Types of chemical bonds Bond: Force that holds groups of two or more atoms together and makes the atoms function as a unit. Example: H-O-H Bond Energy:
Lecture 20 © slg CHM 151 UNIT 4: OXIDATION / REDUCTION BONDING: ionic and covalent LEWIS STRUCTURES: molecules polyatomic ions oxo acids TOPICS.
Chemical Bonds. Forming Chemical Bonds  The force that holds two atoms together is called a chemical bond.  The valence electrons are the electrons.
Covalent Bonding Chapter 8.
Chemical Bonding I: The Covalent Bond
Basic Concepts of Chemical Bonding. Bonding Ionic – Electrostatic forces that exist between two ions of opposite charges transfer of electrons ( metal.
Chapter 9: Basic Concepts of Chemical Bonding NaCl versus C 12 H 22 O 11.
Daniel L. Reger Scott R. Goode David W. Ball Chapter 9 Chemical Bonds.
Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule Three different types of chemical bonds are introduced: ionic,
Forces that hold atoms together.  There are several major types of bonds. Ionic, covalent and metallic bonds are the three most common types of bonds.
Chemical Bonding Bonds form in 2 main ways atoms share electrons electrons are transferred between atoms Type of bond depends on the atom’s electronegativity.
Representing Molecules. Bonding Chemical bonds are forces that cause a group of atoms to behave as a unit. Bonds result from the tendency of a system.
Covalent Bonding Chapter 8.
Chapter 8 Covalent Bonding. The Covalent Bond Atoms will share electrons in order to form a stable octet. l Covalent bond : the chemical bond that results.
Regents Chemistry Agenda Start Chapter 12 - Chemical Bonding
Chapter 8 – Basic Concepts of Chemical Bonding
© Prentice Hall 2001Chapter 11 Bonding Outer shell = valence electrons Octet rule - An atom is most stable if it has an outer shell of eight electrons.
Chapter 121 Chemical Bonding Chapter 12. 2Introduction The properties of many materials can be understood in terms of their microscopic properties. Microscopic.
Bonding – Chapter 7 Bond – an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. ● Ionic bonds.
Chemical Bonding Chapter 11
Bonding Unit Learning Goal #1: Analyze the relationship between the valence (outermost) electrons of an atom and the type of bond formed between atoms.
Section 12.1 Characteristics of Chemical Bonds 1.To learn about ionic and covalent bonds and explain how they are formed 2.To learn about the polar covalent.
CMH 121 Luca Preziati Chapter 3: Chemical Bonds Molecule = A group of at least two atoms, linked together by chemical bonds DEF Chemical Bond = An interaction.
Chapter 7 and 8.  Valence electrons are responsible for the bonding between two atoms.
Organic Chemistry The study of the compounds of carbon Over 10 million compounds have been identified C is a small atom ◦ it forms single, double, and.
Covalent Compounds Chapter 8. Section 1, Covalent Bonds –Remember, ionic compounds are formed by gaining and losing electrons –Atoms can also share electrons.
Chapter 9 Chemical Bonding I: Lewis Theory
Molecule = A group of at least two atoms, linked together by chemical bonds Chemical Bond = An interaction between atoms or molecules caused by the electromagnetic.
 UNIT 4 Bonding and Stereochemistry. Stable Electron Configurations  All elements on the periodic table (except for Noble Gases) have incomplete outer.
Electron Configurations – a Review and More…. Electron Configurations e- configuration notation: Reminder – this notation uses # of e- in a sublevel as.
CHAPTER 8 Basic Concepts in Chemical Bonding. Introduction Attractive forces that hold atoms together in compounds are called chemical bonds. The electrons.
1 Catalyst December 12, 2013 Summarize the properties of ionic compounds in complete sentences. Use page in the book if necessary.
1 Chemical Bonds The Formation of Compounds From Atoms Chapter 11 Hein and Arena.
Chapter #7 Chemical Bonds.. Chemical Bond An attractive force that holds two atoms together in a complex unit. Electrons combine to form chemical bonds.
Chapter 8: Lewis Structures and the Octet Rule AP Chemistry
Chemical Bonding. Chemical bonds hold atoms together. There are 3 types of chemical bonds: -Ionic bonds (electrostatic forces that hold ions together…)
Bonding Chapter 8.
Chemical Bonding I: The Covalent Bond
Chemical Bonding I Basic Concept
Chemical Bonding I: The Covalent Bond
Basic Concepts of Chemical Bonding
Chapter 8 “Covalent Bonding”
Covalent Bonding and Molecular Compounds
Chapter 8 – Basic Chemical Bonding
Ch. 8 Chemical Bonding Chemical bonds hold atoms together.
CHEMICAL BONDING Cocaine
Thursday Agenda Review POGIL exercise Do Now
Section 8.3 Molecular Structures
Ch. 8 Chemical Bonding Chemical bonds hold atoms together.
Chapter 6 Table of Contents Chemical Bonding
Ch. 8 Chemical Bonding Chemical bonds hold atoms together.
Structure & Properties of Matter
Chapter 6 Objectives Define chemical bond.
State University of New York at Brockport
Bonding theories.
ChemicalBonding Honors Only Problems and questions —
Chapter 6- Chemical Bonding
Chapter 12 Chemical bonding.
Basic Concept in Chemistry Class : M.Sc. I
Covalent Bonding and Molecular Compounds
CHEMICAL BONDING Cocaine Chemistry I – Chapter 8
Presentation transcript:

Topic 11: Chemical Bond Formation LECTURE SLIDES Valence electrons Ionic Bonding Covalent Bonding Lewis Structures Acid, Anion Relationships Resonance Structures Bond Length vs Bond Order Octet Violators Formal Charge Kotz & Treichel,

CHAPTER 9: BONDING AND MOLECULAR STRUCTURE Now that we have examined the structure of the atom and the arrangement of its electrons, we are ready to turn to the molecules and compounds they form. Our next studies will center on the bonds that hold the atoms together in compounds, molecules and polyatomic ions. We will also examine the three dimensional shape of these species, and their polar or non polar nature.

The interactions between atoms which lead to bond formation are all centered around the electrons in incomplete subshells and in incomplete outer shells: the valence electrons... The atoms of the elements lose, gain or share these electrons to achieve, where possible, the noble gas configurations we have met. BOND FORMATION

For the “main group elements”, the s and p block members, the electrons available for bonding, the “valence electrons”are the outer shell s and p electrons (except those of the noble gases!) In forming compounds from these elements, only these electrons will be used, in two ways: They may be transferred to form ions so that incomplete subshells are completed or removed; They may be shared so that two atoms together have complete subshells

For the transition metals, the valence electrons include both the s electrons from their outermost shell and also electrons from their inner, incomplete d subshell. The PT column number of the main group and transition metals gives the sum of valence electrons for each element in the family. Note that the column number indicates the maximum positive charge (or oxidation state) these metals can achieve in a compound through loss of e’s in a chemical reaction.

For all main group elements (the columns 1A-8A), it is convenient for bonding purposes, to represent the elements as “Lewis Dot Symbols”, which include one dot for each of their valence electrons. The tendency of these elements to achieve an outer shell configuration of eight electrons (the “octet rule”) is easily visualized through use of these symbols. The valence electrons for transition elements (columns 3B-8B, 1B, 2B) are not represented by dot symbols.

LEWIS DOT STRUCTURES FOR PERIOD 2 All elements, same column: same dot structure

The elements come together to form compounds so that each element can achieve a more satisfactory outer shell electronic configuration. Elements may lose or gain electrons resulting in cation and anion formation and the attraction between the two which we call the “ionic bond” Elements may share one or more pairs of electrons. The attraction of both nuclei for the same pair of electrons results in the force we call the “covalent bond”.

The “ionic bond”: attraction of opposite charges when transfer of electrons cause formation of positive and negative species: cations and anions. The individual ions radiate charge in all directions and cluster in geometric patterns which are described as crystal lattices. Note in the following slide that each ion has many neighbors and the compound itself is not molecular in nature: no discrete “formula units” exist.

Ionic compounds are all solids at room temperature with elevated melting points. Their melting points reflect the very high degree of attraction exhibited by these fully charged particles, which depends on the magnitude of their charge and the ionic size: The larger each charge and the smaller each ion, the greater the attraction. Energy = n (+) X n (-) d n= magnitude of charge d=distance between ions

Ion formation and the resulting ionic bond occurs when metals of sufficiently low electronegativity (X) react with non-metals of sufficiently high X values. The most ionic of compounds are those formed between the active s block metals (X < 1)with the non-metals whose X values are 3.0 or larger. All compounds we have met containing “polyatomic” anions or ammonium are also of course truly ionic type compounds.

Most active metals Most active non-metals

ELECTRONEGATIVITY VALUES, MAIN GROUP ELEMENTS METALS METALLOIDS Non-metals

The second mode of bond formation occurs when elements share one or more pairs of electrons to achieve where possible an outer shell octet. The attraction of both nuclei for the same pair of shared electrons is the basis of the covalent bond. THE COVALENT BOND

Covalent bonds are directed between two atoms, sharing together one or more pairs of electrons. This type of bonding leads to formation of discreet molecules, individual units made up of two or more atoms covalently bonded together. Any formula consisting solely of nonmetals and metalloids can assumed to molecular and covalent in nature. Covalent bonds hold together the atoms within a polyatomic ion. Occasionally, metals with higher electronegativity values will form a compound more covalent than ionic in nature.

Group Work, 11.1: Bond Type Ionic compounds,  en >1.6 or 1.7

LEWIS DOT STRUCTURES: MOLECULES AND COMPOUNDS We are next going to use the Lewis Dot Symbols for the “main group elements” to represent the bonding and structure for various species, molecules, compounds and polyatomic ions. all valence electrons for every atom will be included all shared pairs of e’s will be indicated by a “dash” all unshared pairs of e’s will be indicated by a dot We will use the “octet rule” as our guiding principle.

Diatomic Elements: H 2 Cl 2 N 2 O 2

Check octets! Chlorine, Cl 2 (same for Br 2, F 2, I 2 )

NO OCTET STILL NO OCTET N 2, Nitrogen:

Covalent “triple bond”

OXYGEN ACTS LIKE THIS* CORRECT LEWIS STRUCTURE, Covalent double bond *Required whole new bonding theory to explain...

Lewis Structures: Compounds and Polyatomic Ions GUIDELINES Decide on arrangement of atoms. For most species, the element written first in the molecule or ion is the central atom and the remainder of the atoms are grouped around it. Hydrogen is a problem in “oxo acids” where it is written first in the formula. Ignore H, start with the next atom in formula and place the H or H’s on the O or O’s. First step:

Second Step Add up all available valence electrons. If species is cation, subtract positive charge from total. If species is anion, add negative charge to total. Divide total by two to determine available number of electron pairs Third Step Place a pair of electrons between each pair of bonded atoms to represent a single bond (use a “dash”!)

Step 1 Step 2 Step 3

Fourth Step Place leftover electron pairs around “terminal” atoms to achieve their octet (except H). Do central atom last. Fifth Step Examine central atom to determine if a double or triple bond is required to achieve the central atom’s octet. Do so using unshared pairs, IF central atom is: C, N, P, O, S

N, octet H, duet Step 4: No Step 5 needed

Step 1 Step 2 Step 3

Step 4

GROUP WORK 11.2: Lewis Structures Use 5 steps: Arrange; adds up e’s; draw bonds; assign unshared pairs double bonds if needed to draw Lewis structures for following species: NBr 3 CH 2 Cl 2

Now let’s examine situations requiring the double bond:

No octet

Either one

Be sure to include charge on finished product

GROUP WORK, 11.3: Lewis Structures # 2 Use 5 steps: Arrange; adds up e’s; draw bonds; assign unshared pairs; double bonds if needed to draw Lewis structures for following species: H 3 PO 4 NO 2 1+ ClO 4 1-

Let’s explore the relationship between various “oxo” acids (H, Non metal element, O) and the charge and formula of their anion relative. Recall that acids, by definition, ionize in water to lose one or more H’s as H +. The anion left behind is named according to the name of its “parent” acid. In an acid/base reaction, as we met last unit, acids(H + ) react with bases (OH - ) to form water, leaving behind the anion of the acid and the cation of the base to form a salt.

Recall that acids “ionize” in water, or react with a base to form water, in either case leaving behind some “anion”: H- “Anion” + NaOH H 2 O + Na + An - Acid: HCl, HNO 3 H 2 SO 4 etc... Cl -, NO 3 -, SO 4 2- etc... H- “Anion” H + + Anion - H2OH2O

Group Work, 11.4: Acids and Anions Give missing structures, next four slides! Base structure on accompanying acid or anion...

Group Work 11.4a

Group Work 11.4 b

GW 11.4c

Group Work, 11.4d

No OCTET EQUIVALENT RESONANCE THEORY: WHERE TO PLACE THE DOUBLE BOND...

In all three cases, O 3, NO 3 -, CO 3 2-, when forming a double bond from a “terminal oxygen” one has a choice of moving e’s from several different O’s to makeup the “central atom’s” octet. Examination of experimental evidence (x ray) shed an interesting light on this topic: When two atoms are bonded together, the distance between their nuclei, their “bond length,” depends on whether the bonds between the two are single, double, or triple.

TYPICAL BOND LENGTHS Note that triple bonds are shorter than double and also double shorter than single, as well as being characteristic between any two given atoms. X ray evidence of bond lengths in ozone, nitrate and carbonate ions should therefore prove interesting...

132 pm 121 pm Predicted, “usual” bond lengths: Instead of the predicted bond lengths observed in other compounds, both bonds in x ray showed identical lengths of pm, close to an average of 1 1/2 bonds to each O.

Linus Pauling proposed the “theory of resonance” to describe this situation: When two or more equivalent Lewis structures can be drawn for a species, differing only in the position of electron pairs, then none are correct: The real structure is a hybrid of all structures drawn.

The Lewis structures drawn are called “contributing” or “resonance structures” needed to describe the makeup of the hybrid, which resembles all but is none of the above. A special double headed arrow is drawn between the contributing structures to indicate their hypothetical nature:

The hybrid structure, with two equivalent bonds to the central atom, are said to have a bond order of “1.5” or an average of 1 and 1/2 bonds between each O: THE HYBRID STRUCTURE OF OZONE

Bond Order describes the number of bonds between two atoms in a molecule. Normally, the bond number is 1 (a single bond) or 2 (a double bond) or 3 (a triple bond.) When hybrid structures and resonance situations exist, one must average the number of bonds between all atoms affected, and fractional values arise. In the case of the nitrate and the carbonate ions, the number of bonds to the central atom is averaged out over 3 atoms, and 4 bonds/3 atoms= 1.33 bond order. In both cases, x ray data confirms this theory.

The carbonate ion has three equivalent C-O bonds, of a length typical of 1 and 1/3 bond, for a 1.33 bond order.

The nitrate ion also has three equivalent N-O bonds, of a length typical of 1 and 1/3 bond, for a 1.33 bond order.

Group Work 11.5: Resonance Structure and Bond Order Draw two acceptable Lewis Structures for SO 2 and a resonance hybrid. What is the bond order for the bonds in this compound?

OCTET VIOLATORS Another aspect of drawing correct Lewis structures involves the handling of compounds that do not have an octet around the central atom. Three situations exist: 1. More than 4 e - pairs around central atom 2. Less than 4 e - pairs around central atom 3. Molecules with odd number of electrons In all cases we will handle, the irregularity occurs at the central atom; all “terminal atoms” will have normal octet.

EXAMPLE: Note: Only the central atom, P, is an “octet violator”

Note again: Only the central atom exceeds the octet rule.

Case #2: Less than 4 e - pairs around central atom This category specifically applies to the metalloid Boron, but also to metals that form salts that are more covalent in nature than ionic: Beryllium, Aluminum, for example. These elements use their valence e’s to form compounds but do not form an octet in the process and do not accept double bonds to compensate. These “octet deficient” species will react with other atoms however to form polyatomic ions or compounds which relieve the deficiency.

EXAMPLE: No Octet, octet rule violator

Group work 11.6: Identify “Octet Violators”

While B will not form a double bond to F to achieve an octet (F’s “don’t do” double bonds), it will accept electron pairs readily from other sources to do so: When one atom donates two electrons for a pair of atoms to share, the bond is called a “coordinate covalent bond” and introduces “charge buildup” in the species formed.

To keep track of this kind of charge within a molecule or polyatomic ion, the concept of “FORMAL CHARGE” is introduced. Formal charges look within a molecule or polyatomic ion and determine how the charges are distributed by considering for each atom: the number of valence e’s it started with the number of bonds formed the number of unshared electrons leftover

For each atom in species: formal charge = # valence e’s - (#bonds + #unshared e’s) FORMAL CHARGE: The “formal charge” system requires a Lewis Dot Structure and assigns an individual “formal” charge to each atom in the species. Formal charge is an alternate “bookkeeping method” for tracking electron distribution to the “oxidation number” system we met previously.

Now let’s return to the compound formed between ammonia and boron trifluoride, and determine formal charges: Formal charges

NH 3 BF 3

OXIDATION NUMBERS: “Ox #’s” are assigned or calculated based on known fixed positive and negative charges, and can be determined by examination of the formula for the species. Oxidation numbers are useful to identify how charges change in a redox (oxidation-reduction) reaction.

To see how both work, let’s look at chloric acid, HClO 3, and see how its charge distribution would be described using both the oxidation number and the formal charge systems.

Sum of all charges in compound = 0 Known ox #’s per atom

Lewis Structure

formal charge = # valence e’s - (#bonds + #unshared e’s) Like ox #’s, the sum of all formal charges in a compound must equal 0.

Oxidation numbers Formal Charges

Finally, both oxidation numbers and formal charges must add up the same way: For compounds, which are always electrically neutral, the sum of all oxidation numbers or the sum of all formal charges must equal zero. For polyatomic ions, which always have a specific charge, the sum of all oxidation numbers or the sum of all formal charges must equal the charge on the ion.

1: Do Ox #’s from formula (same for both!) 2: Do formal charge from Lewis Structure for all atoms: formal charge = # valence e’s -( # bonds+ # unshared e’s) Group Work 11.7: Oxidation Numbers vs Formal Charge