Acid Base Disturbances Ian Chan MS4 Eliza Long R2 Dr. Abdul-Monim Batiha.

Slides:



Advertisements
Similar presentations
DEFINITIONS acidemia/alkalemia acidosis/alkalosis an abnormal pH
Advertisements

Acid Base Anthony R Mato, MD. Basics Normal pH is 7.38 to 7.42 Key players are CO2 and HCO3 – concentrations “emia” : refers to blood pH Acidemia : pH.
ABG’s. Indications Technique Complications Analysis Summary.
Acid-Base Disturbances
Approach To Acid Base Disorders
Acid-Base Disorders Adapted from Haber, R.J.: “A practical Approach to Acid- Base Disorders.” West J. Med 1991 Aug; 155: Allison B. Ludwig, M.D.
Acid-Base Disorders Robert Fields, DO St Joseph’s Mercy Hospital Emergency Dept.
A&E(VINAYAKA) Blood Gas Analysis Dr. Prakash Mohanasundaram Department of Emergency & Critical Care medicine Vinayaka Missions University.
Evaluation and Analysis of Acid-Base Disorders
The Simple Acid/Base Disorders Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM.
Acid Base Physiology Overview Jeff Kaufhold, MD FACP 2010.
Deborah J. DeWaay MD Assistant Professor of Medicine Associate Vice-Chair of Education Department of Internal Medicine Medical University of South Carolina.
Waleed Talal Alotaibi MBBS. objectives Definitions How to approach? Differential diagnosis Anion gap VS. non-anion gap metabolic acidosis Treatment of.
Acid-base Disturbances Mohammed saeed abdullah al-mogobaa Mohammed saeed abdullah al-mogobaa
ACID-BASE SITUATIONS.
 The Components  pH / PaCO 2 / PaO 2 / HCO 3 / O 2 sat / BE  Desired Ranges  pH  PaCO mmHg  PaO mmHg  HCO 3.
Acid-base disorders  Acid-base disorders are divided into two broad categories:  Those that affect respiration and cause changes in CO 2 concentration.
Arterial Blood Gases Made Easy Arterial Blood Gases.
HUMAN RENAL SYSTEM PHYSIOLOGY Lecture 11,12
Diabetes Clinical cases CID please… Chemical Pathology: Y5 Karim Meeran.
Carbonic Acid-Bicarbonate Buffering System CO 2 + H 2 O  H 2 CO 3  H + + HCO 3 – Respiratory regulation Respiratory regulation Renal regulation Renal.
LABORATORIUM INTERPRETATION OF ACID-BASE & ELECTROLITES DISORDERS dr. Husnil Kadri, M.Kes Biochemistry Departement Medical Faculty Of Andalas University.
Renal Acid-Base Balance. Acid An acid is when hydrogen ions accumulate in a solution. It becomes more acidic [H+] increases = more acidity CO 2 is an.
Measured by pH pH is a mathematical value representing the negative logarithm of the hydrogen ion (H + ) concentration. More H + = more acidic = lower.
Acid-Base balance Prof. Jan Hanacek. pH and Hydrogen ion concentration pH [H+] nanomol/l
Clinical Definitions and Diagnostic Aids
Acid-Base Balance for Allied Health Majors Using the Henderson-Hasselbach Equation H 2 O + CO 2 H 2 CO 3 H + + HCO 3 - pH = pK + log HCO 3 - pCO 2 ( α.
ABG CASE STUDIES & INTERPRETATION
Acid-Base Imbalance NRS What is pH? pH is the concentration of hydrogen (H+) ions The pH of blood indicates the net result of normal acid-base.
The Basics of Blood Gas and Acid-base Kristen Hibbetts, DVM, DACVIM, DACVECC.
با نام و یاد خدا.
Metabolic Acidosis/Alkalosis
Acid base balance 341 Mohammed Al-Ghonaim, MBBS,FRCPC,FACP.
Simple Rules for the Interpretation of Arterial Blood Gases Nicholas Sadovnikoff, MD, FCCM Assistant Professor, Harvard Medical School Co-Director, Surgical.
Introduction to Acid Base Disturbances
Arash Safaie, MD Emergency Physician.   pH  ↓7.36: Acidemia  ↑7.44: Alkalemia  Physiologic Buffers  Bicarbonate  Carbonic Acid Systems (RBCs) 
Acid-Base Balance. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Objectives Explain how the pH of the blood.
Acid-Base Balance Disturbances
A Practical Approach to Acid-Base Disorders Madeleine V. Pahl, M.D., FASN Professor of Medicine Division of Nephrology.
Acid Base Disorders Apply acid base physiology to identify acid base d/o Respiratory acidosis/alkalosis Classify types of metabolic acidosis “anion gap”
Practice Problems Acid-Base Imbalances interpretation of Arterial Blood Gases (ABG) RESP.
Arterial Blood Gas Analysis
Acid-Base Balance Disturbances. Acids are produced continuously during normal metabolism. (provide H+ to blood) H + ion concentration of blood varies.
(Renal Physiology 11) Acid-Base Balance 3
ABG INTERPRETATION. BE = from – 2.5 to mmol/L BE (base excess) is defined as the amount of acid that would be added to blood to titrate it to.
Acidemia: blood pH < 7.35 Acidosis: a primary physiologic process that, occurring alone, tends to cause acidemia. Examples: metabolic acidosis from decreased.
Physiology of Acid-base balance-2 Dr. Eman El Eter.
Acid-base Regulation in human body
The Clinical Approach to Acid- Base Disorders Mazen Kherallah, MD, FCCP Internal Medicine, Infectious Diseases and Critical Care Medicine.
Acid-Base Balance Prof. Omer Abdel Aziz. Objectives Definition Regulation Disturbances.
Acid Base Balance B260 Fundamentals of Nursing. What is pH? pH is the concentration of hydrogen (H+) ions The pH of blood indicates the net result of.
It aiN’T All that Simple Dr alex Hieatt Consultant ED
Diabetes Clinical cases CID please… Chemical Pathology: Y5
Acid-Base Imbalance.
ABG INTERPRETATION.
ACID BASE DISORDER DR UZMA MALIK
Diagnosis of Acid Base Disorders
ACID BASE DISTURBANCES
Acid-Base Calculations
Acid-Base Balance.
This lecture was conducted during the Nephrology Unit Grand Ground by Medical Student rotated under Nephrology Division under the supervision and administration.
Acid-Base Balance.
Unit I – Problem 3 – Clinical Acid-Base Disturbances
Acid Base Disorders.
Approach to Acid-Base Disorder
Arterial Blood Gas Analysis
Arterial blood gas Dr. Basu MD.
Abdullah Alsakka EM.Consutant
Approach to the Patient with Acid-Base Problems
Arterial Blood Gas Analysis
Presentation transcript:

Acid Base Disturbances Ian Chan MS4 Eliza Long R2 Dr. Abdul-Monim Batiha

ABG analysis Why do we care ? –Critical care requires a good understanding –Helps in the differential and final diagnosis –Helps in determining treatment plan –Treating acid/base disorders helps medications work better (i.e. antibiotics, vasopressors, etc.) –Helps in ventilator management –Severe acid/base disorders may need dialysis –Changes in electrolyte levels in acidosis (increased K+ and Na+, and decreases in HCO3)

Acid buffering

The Anion Gap Na – (Cl + HCO3) NaHCO3 + HCL  NaCL + H2CO3 NaHCO3 + HX  NaX+ H2CO3 Unmeasured cations: calcium, magnesium, gamma globulins, potassium. Unmeasured anions: albumin, phosphate, sulfate, lactate.

Gap Acidosis MethanolUremia Diabetic ketoacidosis ParaldehydeINH Lactic acidosis Ethylene Glycol Salicylate

Non Gap Acidosis H: hyperalimentation A: acetazolamide R: RTA D: diarrhea U: rectosigmoidostomy P: pancreatic fistula

Metabolic Acidosis Respiratory compensation process takes hours to become fully active. Protons are slow to diffuse across the blood brain barrier. In the case of LA this will be faster because LA is produced in the brain. The degree of compensation can be assessed by using Winter’s Formula. It is INAPPROPRIATE to use this formula before the acidosis has existed for hours. –PCO2 = 1.5 (HCO3) + 8 +/-2.

Decreased anion gap Decrease in unmeasured anions –Hypoalbuminemia Increase in unmeasured cations –Hypercalcemia –Hypermagnesemia –Hyperkalemia –Multiple myeloma –Lithium toxicity

Metabolic Alkalosis Generation by gain of HCO3 and maintained by abnormal renal HCO3 absorption. This is almost always secondary to volume contraction (low Cl in urine, responsive to NaCl, maintained at proximal tubule) –Vomiting: net loss of H+ and gain of HCO3. –Diuretics: ECFV depletion –Chronic diarrhea: ECFV depletion –Profound hypokalemia –Renal failure: if we cannot filter HCO3 we cannot excrete it. Mineralocorticoid excess: increased H secretion, hypokalemia (Na/K exchanger), saline resistant).

Respiratory Acidosis Acute or Chronic: has the kidney had enough time to partially compensate? The source of the BUFFER (we need to produce bicarb) is different in these states and thus we need to make this distinction.

Respiratory Acidosis Acute : H is titrated by non HCO3 organic tissue buffers. Hb is an example. The kidney has little involvement in this phase. –10 mm Hg increase in CO2 / pH should decrease by.08 Chronic: The mechanism here is the renal synthesis and retention of bicarbonate. As HCO3 is added to the blood we see that [Cl] will decrease to balance charges. –This is the hypochloremia of chronic metabolic acidosis. –10 mm H increase in CO2 / pH should decrease by.03

Respiratory Acidosis Elevation of CO2 above normal with a drop in extracellular pH. This is a disorder of ventilation. Rate of CO2 elimination is lower than the production 5 main categories: –CNS depression –Pleural disease –Lung diseases such as COPD and ARDS –Musculoskeletal disorders –Compensatory mechanism for metabolic alkalosis

Respiratory Alkalosis Initiated by a fall in the CO2  activate processes which lower HCO3. Associated with mild hypokalemia. Cl is retained to offset the loss of HCO3 negative charge. Acute response is independent of renal HCO3 wasting. The chronic compensation is governed by renal HCO3 wasting. Causes –Intracerebral hemorrhage –Drug use : salicylates and progesterone –Decreased lung compliance Anxiety –Liver cirrhosis –Sepsis

Arterial Blood Gas (ABG) Analysis ABG interpretation Follow rules and you will always be right !! 1) determine PH acidemia or alkalemia 2) calculate the anion gap 3) determine Co2 compensation (winters formula) 4) calculate the delta gap (delta HCO3)

ABG analysis Arterial Blood Gas (ABG) –interpretation –Always evaluate PH first Alkalosis – PH > 7.45 Acidosis – PH < 7.35 –Determine anion gap (AG) – AG = NA – (HCO3+ CL) AG metabolic acidosis Non AG acidosis – determined by delta gap –Winters formula Calculates expected PaCO2 for metabolic acidosis PaCO2 = 1.5 x HCO3 + 8

ABG analysis Delta gap –Delta HCO3 = HCO3 (electrolytes) + change in AG Delta gap < 24 = non AG acidosis Delta gap > 24 = metabolic alkalosis –Note: The key to ABG interpretation is following the above steps in order.

ABG analysis 33 y/o with DKA presents with the following: –Na = 128, Cl = 90, HCO3 = 4, Glucose = 800 –7.0/14/90/4/95% –PH = acidemia –AG = 128 – (90 + 4) = 34 –Winters formula – 1.5(4) + 8 = 14 –Delta gap = 4 + (34 – 12) = 26

ABG analysis Answer –AG acidosis with appropriate respiratory compensation –History c/w ketoacidosis secondary to DKA with appropriate respiratory compensation

ABG analysis 56 y/o with COPD exacerbation and hypotension and associated diarrhea x 7 days presents with the following ABG: –7.22/30/65/10/90% PH(7.22) = acidemia AG = 139 – ( ) = 19 (nl AG = 8-12) Winters formula –PaCO2 = 1.5 (HCO3) + 8 = 1.5 (10) + 8 = 23 Delta gap –Delta gap = HC03 + change in the AG = 24 –Delta gap = 10 + (19 – 12) = = 17 –Delta gap =

ABG - example Triple disorder –AG acidosis - –Incomplete respiratory compensation –Non AG acidosis History would suggest AG acidosis is secondary to hypotension with lactic acid build up and the patient is not able to compensate with his COPD therefore there is no respiratory compensation and the non AG acidosis is secondary to diarrhea with associated HCO3 loss.

Look at the pH. –pH < 7.35, acidosis –pH > 7.45, alkalosis Look at PCO2, HCO3- Main pathology will be the change correlates with the pH. Main pathology will be the change correlates with the pH. If alkalosis pCO2 will be low or Bicarb high If alkalosis pCO2 will be low or Bicarb high If acidosis pCO2 will be high or Bicard low If acidosis pCO2 will be high or Bicard low The other abnormal parameter is the compensator response The other abnormal parameter is the compensator response Respiratory or Metabolic pCO2 - respiratory pCO2 - respiratory Bicarb - metabolic Bicarb - metabolic

Metabolic Acidosis? Anion Gap? >12 - ketoacidosis, uremia, lactic acidosis, or toxins >12 - ketoacidosis, uremia, lactic acidosis, or toxins Delta ratio to check for gap and non gap disorders, or metabolic alkalosis happening simultaneously Delta ratio to check for gap and non gap disorders, or metabolic alkalosis happening simultaneously Normal anion gap - diarrhea OR unknown. If unknown calculate urine anion gap, if positive likely RTA, if neg liekly diarrhea Normal anion gap - diarrhea OR unknown. If unknown calculate urine anion gap, if positive likely RTA, if neg liekly diarrhea Metabolic Alkalosis If urin Cl is > 20 it is chloride-resistant alkalosis (increased mineralcorticoid activity If <20 chloride responsive alkalosis (vomitting or gastric loss)

Example # 1 44 yo M 2 weeks post-op from total proctocolectomy for ulcerative colitis. Na+ 134, K+ 2.9, Cl- 108, HCO3- 16, BUN 31, Cr 1.5 BG: 7.31/ 33 /93 / 16

Example #2 9 yo M presents with N/V. Na 132, K 6.0, Cl 93, HCO3- 11 glucose 650 BG: 7.27/23/96/11/-8

Example #3 70 yo M s/p lap chole, on the morning of POD #1. Pt received 2L bolus of crystalloid throughout pm for tachycardia. Now with SOB / 60 / 52 / 27 /+3

Example #4 54 yo F s/p mult debridements for necrotizing fasciitis, now on vassopressin to maintain blood pressure BG /40/83/17/-6

Example #5 35 yo M involved in crush injury, boulder vs body. Na 135, K 5.0, Cl 98, HCO3- 15 BUN 38, Cr 1.7, CK 42,346 BG: 7.30/32/96/15/-4

Example #6 4 wks M with projectile emesis Na: 140, K:2.9, Cl: /40/98/30/+6