Defect physics of CuInSe 2 chalcopyrite semiconductor Yoshida-lab Hiroki Uede S. B. Zhang, Su-Huai Wei, Alex Zunger, H. Katayama-Yoshida, Phys. Rev. B.

Slides:



Advertisements
Similar presentations
Superconductivity in Ba1-XKXBiO3(BKBO)
Advertisements

三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
E bb **. E Looking only at this region in the Rectangle:
The DFT-calculation of Potassium doped Picene Kotaro Yamada Kusakabe labolatory.
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
The physics of blue lasers, solar cells, and stop lights Paul Kent University of Cincinnati & ORNL.
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
2014/7/2 Yoshida lab Shun Miyaue
Electronic structure of La2-xSrxCuO4 calculated by the
Thermoelectrics: The search for better materials
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
Doped Semiconductors Group IVA semiconductors can be “doped” by adding small amounts of impurities with more or fewer than 4 valence electrons. e.g. add.
P461 - Semiconductors1 Semiconductors Filled valence band but small gap (~1 eV) to an empty (at T=0) conduction band look at density of states D and distribution.
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Lecture #3 OUTLINE Band gap energy Density of states Doping Read: Chapter 2 (Section 2.3)
Lecture Jan 31,2011 Winter 2011 ECE 162B Fundamentals of Solid State Physics Band Theory and Semiconductor Properties Prof. Steven DenBaars ECE and Materials.
Dopants of Cu2ZnSnS4 (CZTS) for solar cells
An Introduction to Semiconductor Materials
Copper Chalcogenide Semiconductors for Photovoltaic Applications
EE580 – Solar Cells Todd J. Kaiser Lecture 04 Semiconductor Materials Chapter 1 1Montana State University: Solar Cells Lecture 4: Semiconductor Materials.
Theoretical Study of Chalcopyrite CuInTe 2 as Thermoelectric(TE) materials 2014/12/3 Yoshida lab Shun Miyaue thermoelectric (TE) : 熱電 /12/0 3.
Relation between photoluminescence and photoluminescence-excitation spectra in the linear response regime measured on two- dimensional electron gas T.
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Solar Cells Rawa’a Fatayer.
Chapter 7 Electrical properties. Typical values of electrical conductivity.
Computational Materials Design for highly efficient In-free CuInSe 2 solar sells Yoshida Lab. Yoshimasa Tani.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Defect physics of CuFeS 2 chalcopyrite semiconductor Yoshida Lab. Satoshi Ikemoto
Computational Solid State Physics 計算物性学特論 第6回
Semiconductor Equilibrium
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
1 Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a “sea of electrons” shared between all.
Impurities & Defects, Continued More on Shallow Donors & Acceptors Amusing Answers to Exam Questions Given by Public School Students!
© 2008 Brooks/Cole 1 Chapter 20, section 20.3 Semiconductors and superconductors.
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Solar panels A solar panel is made up of photovoltaic cells. A photovoltaic cell converts light energy into electricity. A conductor is something that.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
BASIC ELECTRONICS Module 1 Introduction to Semiconductors
電子セラミックスと固体化学 Electroceramics and Solid State Cheminstry 格子欠陥の利用 Application of Lattice Defects 工学部 応用化学科 片山 恵一.
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
Free Electron Model for Metals
Band Theory of Solids In isolated atoms the electrons are arranged in energy levels.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Chapter II Semiconductor Physics
Solar panels are pretty expensive, but they are good to save money on electricity. They take something from the sun and do something with it to make it.
Lecture 1 OUTLINE Semiconductors, Junction, Diode characteristics, Bipolar Transistors: characteristics, small signal low frequency h-parameter model,
EE105 - Spring 2007 Microelectronic Devices and Circuits
NEEP 541 Ionization in Semiconductors Fall 2002 Jake Blanchard.
Semiconductors with Lattice Defects
Comments on Band Offsets Alex Zunger University of Colorado, Boulder, Colorado S.H. Wei, NREL.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
Properties of metals Metals (75% of elements) Lustrous (reflect light)
ユニタリー・フェルミ気体の一粒子スペ クトル関数に対する和則の構築 基研研究会「熱場の量子論とその応用」 Philipp Gubler (RIKEN, Nishina Center) Collaborators: Y. Nishida (Tokyo Tech), N. Yamamoto.
1. Photo-voltaic anomalous transport in graphene 強相関電子系・異常量子系の非平衡での物性 2. Photo-induced phase transition in Mott insulators 2.1. Photo-induced TL-like liquid.
CCMGCCMGCCMGCCMGCCMGCCMGCCMGCCMG Ji-Hui Yang, Shiyou Chen, Wan-Jian Yin, and X.G. Gong Department of Physics and MOE laboratory for computational physical.
Band Theory of Electronic Structure in Solids
Overview of Silicon Device Physics
Isolated Si atoms.
“Semiconductor Physics”
ICFPAM’2015, March 30–April 2, Marrakech, Morocco 2015
Band structure: Semiconductor
First-principles studies of water splitting at semiconductor and oxide surfaces Poul Georg Moses and Chris G. Van de Walle , Materials Department, University.
Physics 342 Lecture 28 Band Theory of Electronic Structure in Solids
tight binding計算によるペロブスカイト型酸化物薄膜のARPESの解析
Basic Semiconductor Physics
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
Presentation transcript:

Defect physics of CuInSe 2 chalcopyrite semiconductor Yoshida-lab Hiroki Uede S. B. Zhang, Su-Huai Wei, Alex Zunger, H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998). Defect ( 欠陥 ) Chalcopyrite semiconductor ( カルコパイライト型半導体 )

Contents I.Introduction II.Calculation method III.Calculation results IV.Summary V.My work

Application of CuInSe 2 and motivation 山口真史他 著 『太陽電池の基礎と応用』 丸善株式会社 visible light p-type conductor at high doping ? Photovoltaic solar cell high absorption coefficient high efficiency self-healing create p- and n-type CuInSe 2 crystal superconducting matter? Photovoltaic solar cell ( 太陽光発電 ) Absorption coefficient ( 吸収係数 ) Superconducting matter ( 超伝導物質 )

cation anion Chalcopyrite structure cation1 cation2 anion What is Chalcopyrite structure? Diamond structure Zinc-blende structure ×2 閃亜鉛鉱型構造

CuInSe 2 Chalcopyrite semiconductor Experimental energy gap =1.04[eV] (direct gap) Lattice parameter a=5.786[Å] η=c/a=2.016 c a Cu In Se Copper Indium Diselenide for Photovoltaic Applications, edited by T. J. Coutts, L. L. Kazmerski, and S. Wagner (Elsevier, Amsterdam,1986).

Details Cu In Se In Cu V Cu V In Cu In Cu i Defect formation energy ( 欠陥生成エネルギー ) Vacancy of atom ( 原子空孔 ) Antisite ( 逆サイト ) Interstitial ( 格子間 ) V Cu,V In :vacancy of atom Cu, In In Cu :antisite of atom In on site Cu Cu In :antisite of atom Cu on site In Cu i :Cu type interstitial

Defect formation energy for a neutral(q=0) defect q CuInSe 2 crystal defect atom electron thermal equilibrium ( 熱平衡 )

Defect formation energy for a charge(q≠0) defect q CuInSe 2 crystal defect atom electron

Limits of Fermi energy and atomic chemical potential Fermi energy bound between the valence band maximum(VBM) and conduction band minimum(CBM) CBM VBM Energy gap Valence band Conduction band Chemical potential valence band ( 価電子帯 )=HOMO conduction band ( 伝導帯 )=LUMO

Defect transition energy level Defect transition energy level ( 欠陥遷移エネルギー準位 )

Computational details Density Functional theory(DFT) Local Density Approximation(LDA) by the general potential Linearized Augmented Plane-Wave(LAPW) method Muffin-tin radius of 2.2 a.u. the Ceperley-Alder exchange correlation potential as parametrized by Perdew and Zunger cut-off energy is 10 Ry equivalent k points of the 10 special k points in the irreducible zinc-blende Brillouin zone Density Functional theory (密度汎関数法) Local Density Approximation (局所密度近似) Linearized Augmented Plane-wave method (線形化補強平面波法) Exchange correlation potential (交換相関ポテンシャル)

Calculation results Formation energy of V Cu is low V Cu has a shallow acceptor level Defect transition energy level Formation energy of V Cu & In Cu are negative Defect formation energy vs. Fermi energy

Formation energy of a defect pair defect pair ( 欠陥対 )

Calculate results of formation energy of a defect pair A(Cu-rich, In-rich) B(Cu-poor, In-rich) C(Cu-rich, In-poor)

Summary Cu-poor, Se-rich is best for p-metal

My work Calculate chalcopyrite structure as a p-type doped superconductor material Calculate superconducting critical temperature T C Calculate band structure of CuAlS 2, chalcopyrite structure