Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.

Slides:



Advertisements
Similar presentations
Noise Measurements W vs. T bath & Thermal Conductance Measurements NEP measurements at T bath = 311 mK for V BIAS = 1  V with predicted noise levels for.
Advertisements

The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
1 ACT  Atacama Cosmology Telescope  Funded by NSF  Will measure CMB fluctuations on small angular scales  Probe the primordial power spectrum and the.
CCD-style imaging for the JCMT. SCUBA-2 technology  the ability to construct large format detector arrays  signal readouts that can be multiplexed To.
TES Bolometer Array with SQUID readout for Apex
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
RUN HISTORY Preparation: 17/10Cryostat, pumps and electronics mounted in the cabin (total time 2h) 18/10Cooling down to 80mK. Resonances OK (SRON array)
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Low Temperature X-ray Detectors Caroline K. Stahle NASA / Goddard Space Flight Center.
Large area transition-edge sensor array for particle induced X-ray emission spectroscopy M Palosaari1, K Kinnunen1, I Maasilta1,
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
Rome, January 17th,2006 Flavio Gatti WHIM and Mission Opportunities TES microcalorimeters in the European context Flavio Gatti University and INFN, Genoa.
ConX – XEUS meeting Panu Helistö, Mikko Kiviranta Utrecht,
A. Monfardini, IAP 30/07/ NIKA (Néel IRAM KID Array) First light at the 30-m IRAM dish NIKA collaboration: - Institut Néel - Grenoble - AIG - Cardiff.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Netherlands Institute for Space Research Development of TES-microcalorimeter arrays and Frequency Domain Multiplexed read-out Henk Hoevers Division Sensor.
1 Workshop on X-ray Mission Architectural Concepts Linthicum, MD December 14-15, 2011 Enabling Technologies for the High-Resolution Imaging Spectrometer.
XEUS cryogenic instrument October 2004 CRYOGENIC SPECTROMETER PROTOTYPE Rationale: Development and demonstration of technical readiness for future.
M. D. Niemack, et al., P03 A kilopixel array of TES bolometers for ACT: Development, Testing, and First Light Low Temperature Detectors 12, P03 July 26,
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Montpellier, November 15, 2003 J. Cvach, TileHCAL and APD readout1 TileHCAL- fibre readout by APD APDs and preamplifiers Energy scan with DESY beam –Energy.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Study of the MPPC performance - R&D status for the GLD calorimeter readout – Nov 6-10.
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
JW den Herder 1 18/10/2004 Science case Main science drivers (comsic vision ): Super Novae and the life cycle of matter Study of cluster evolution.
Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Cryogenic Detectors and Test Infrastructure at the University of Leicester G.W. Fraser Space Research Centre, Michael Atiyah Building, Department of Physics.
XEUS Cryogenic Instrument October 2004 Cryogenic X-ray sensor development in US, Europe and Japan Micro-calorimeters Doped - thermistors Astro-E2.
Characterization of noise and transition shapes in superconducting transition-edge sensors using a pulsed laser diode Dan Swetz Quantum Sensors Group NIST.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Laboratory Astrophysics using an Engineering Model XRS Microcalorimeter Array NASA/GSFCLLNL. F. Scott PorterPeter Beiersdorfer Keith GendreauGreg Brown.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
Demonstration of a Far-IR Detector for Space Imaging Principal Investigators: C. Darren Dowell (326), Jonas Zmuidzinas (Caltech) Co-Investigators: Peter.
Calorimeter Impedance Study K. A. Barger, M. A. Lindeman, and L. E. Rocks.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Preamplifier R&D at University of Montreal for the drift chamber J.P. Martin, Paul Taras.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Microwave SQUID multiplexer for the readout of large MMC arrays
Cryogenic Particle Detectors in Rare event Searches
Activities on straw tube simulation
Some thoughts on readout
Radiation Detection via Transition Edge Sensor (TES)
Energy Response of the X-ray Imaging Spectrometer (XIS) on Suzaku
MARE (microcalorimeter array for a rhenium experiment)
The MPPC Study for the GLD Calorimeter Readout
Gain measurements of Chromium GEM foils
Presentation transcript:

Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R. Horansky K. Irwin B. Mates G. O’Neil N. Miller C. Reintsema D. Schmidt L. Vale Y. Xu B. Zink

Transition-edge sensor (TES) calorimetry Temperature Time C E  C G  energy (x-ray) Conductance G Thermal C Heat Capacity temperature response Temperature (mK) Resistance (  ) I V SQUID current amp thermometer

TES issues single pixel performance energy resolution capture efficiencyspeed multipixel arrays ease of fabrication, homogeneity stability of operation readout of arrays

expected noise sources: - fluctuations in thermal impedances - Johnson noise unexpected noise source: - behaves like white voltage noise Obstacle to better TES resolution: unexplained noise L/R roll-off Johnson noise phonon noise unexplained noise

Different TES geometries additional normal metal features definition:  = (T/R) dR/dT perpendicular bars reduce 

Noise vs. geometry: unexplained noise and  correlated low  designs have little unexplained noise perpendicular normal features reduce noise and  all data at 60% R N

 ≈ 450  ≈ 450  ≈ 500  ≈ 150  ≈ 40  ≈ 40  ≈ 15  ≈ 40  ≈ 40  ≈ 15 SRON parameter study normal islands and bars … noise measurements to follow

Design strategy: match E  -max to 5.9 keV, lower   = 45 C = 0.9 pJ/K M =  m Bi 50% at 6 keV 261  s 400  m

X-ray absorbers simplest absorber = material stacked on TES need  machined collimator to shield streets what is fill fraction ? for NxN array, max wires in 1 street = N (near center) demonstrated: 2 wires & spaces in 3.5  m for N=30, min street width ~ 55  m with litho development, ~ 25  m ? fill fraction = 67% [83%] for 250  m pixels = 86% [93%] for 700  m pixels = 90% [95%] for 1 mm pixels demonstrated: 2.4 eV in 250  m device 2.9 eV in 400  m device predict 4.5 eV in 680  m, 6.0 eV in 830  m elementd for 95% QE at 6 keV C/  m 2 [ J/K] size for C = 2.5 pJ/K Au 3.5  m 240 (at 100 mK) 320  m x 320  m Bi 6.3  m 5.8 (?) 2080  m x 2080  m Cu 29.5  m  m x 90  m Sn 7.8  m  m x 4390  m HgTe, … Bi TES SiNx Si ~ 4 eV (L pix +L street ) 2 L pix 2

X-ray absorbers - mushrooms very high fill fraction overhang can shield streets more challenging design, fabrication absorber SiNx Si TES normal metal - Au normal metal - heat pipe Bi GSFC - 4  m electroplated Au ~2.5 eV at 6 keV T c = 65 mK,  = 7 ms GSFC BiCu, ~4.5 eV at 6 keV NIST

TES for 100 keV: attach bulk absorber 1 mm Sn aborber: QE = 20% at 100 keV Mo/Cu thermometer now 27 eV at 103 keV

Arrays: fabrication straightforward GSFC NIST SRON NIST

E = 4.9 eV; Number of counts = ; Energy(eV) s t n u o C 16 hour acquisition, no gain correction  E 10% worse than in short record 3/4 hour acquisition, no gain correction no detectable drift TES stability stable long-term operation possible … SRON NIST/CSTL … but cannot yet be taken for granted. Requires close attention to stray RF power, stray magnetic fields, and temperature stability. Also, some dependence on device and bias point. These dependencies not yet understood.

Time-Division SQUID Multiplexing schematic data stream...

Measure many TESs in multiplexed test setup 6.25 mm interface chip 32:1 multiplexer chip 8 x 8 sensor array individual sensor

8- and 16-channel results 8-channel TDM 16-channel TDM Multiplexed x-ray calorimeter results

128-pixel MUX facility complete four 32- channel SQUID MUX chips 16 x 16 x-ray array will be tested at the end of June presently:  -ray  cal

Arrays lots of data: multiplexed R(T) curves variation in transition shapevariation in response we can already engineer the transition width; soon we will engineer the transition smoothness

sensor  ± (  s) open loop BW (MHz)  E (eV) single muxed pixels per column pixels in square array Future mux performance presently, cryogenic BW ~1.5 MHz and electronics BW 3 MHz (designed in 1999) we will increase system BW to 3.5 MHz … - minor adjustments and then to 12 MHz. - cold series array, electronics redesign simulated MUX performance: but … NeXT ?

New SQUIDS! gradiometric summing coils gradiometric SQUIDs asymmetric V-  mutual inductance optimized for x-ray measurements asymmetric V-  greater dynamic range & linearity gradiometric design less magnetic shielding & crosstalk (will help system engineering) 100 mK testing in June; production run scheduled for July

optimism is in order - TES calorimeters continue to improve energy resolutions < 3 eV at 5.9 keV, 27 eV at 103 keV very promising results in complex absorber structures - mushrooms: ~ 2.5 eV - attached bulk absorbers: 27 eV (  -ray) array fabrication feasible - some work ahead to improve homogeneity lengthy, stable spectra feasible - some work ahead to make routine time-domain SQUID mux works well > 196 NeXT-like pixels [1 ms] in 1 channel in 2007 ? > 32 fast pixels [50  s] in 1 channel also very feasible Conclusions a TES option for NeXT could be VERY large does the science case justify a  -ray array ?