Chapter Describing the Relation between Two Variables © 2010 Pearson Prentice Hall. All rights reserved 3 4.

Slides:



Advertisements
Similar presentations
Chapter 4 Describing the Relation Between Two Variables
Advertisements

Forecasting Using the Simple Linear Regression Model and Correlation
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter 4 Describing the Relation Between Two Variables 4.3 Diagnostics on the Least-squares Regression Line.
Probabilistic & Statistical Techniques Eng. Tamer Eshtawi First Semester Eng. Tamer Eshtawi First Semester
Correlation and Regression
Chapter 4 The Relation between Two Variables
Definition  Regression Model  Regression Equation Y i =  0 +  1 X i ^ Given a collection of paired data, the regression equation algebraically describes.
Chapter 4 Describing the Relation Between Two Variables
© 2010 Pearson Prentice Hall. All rights reserved Scatterplots and Correlation Coefficient.
© 2010 Pearson Prentice Hall. All rights reserved Least Squares Regression Models.
Describing the Relation Between Two Variables
9. SIMPLE LINEAR REGESSION AND CORRELATION
Correlation and Regression Analysis
The Simple Regression Model
Regression Chapter 10 Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania.
Math 227 Elementary Statistics Math 227 Elementary Statistics Sullivan, 4 th ed.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Business Statistics - QBM117 Least squares regression.
Least Squares Regression
1 Chapter 10 Correlation and Regression We deal with two variables, x and y. Main goal: Investigate how x and y are related, or correlated; how much they.
Introduction to Linear Regression and Correlation Analysis
Chapter 11 Simple Regression
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on the Least-Squares Regression Model and Multiple Regression 14.
1 Chapter 3: Examining Relationships 3.1Scatterplots 3.2Correlation 3.3Least-Squares Regression.
Least-Squares Regression Section 3.3. Why Create a Model? There are two reasons to create a mathematical model for a set of bivariate data. To predict.
1 Chapter 10 Correlation and Regression 10.2 Correlation 10.3 Regression.
Chapter 10 Correlation and Regression
Statistical Methods Statistical Methods Descriptive Inferential
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
Chapter 4 Describing the Relation Between Two Variables 4.1 Scatter Diagrams; Correlation.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 4 Section 2 – Slide 1 of 20 Chapter 4 Section 2 Least-Squares Regression.
1 Association  Variables –Response – an outcome variable whose values exhibit variability. –Explanatory – a variable that we use to try to explain the.
Least Squares Regression.   If we have two variables X and Y, we often would like to model the relation as a line  Draw a line through the scatter.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 3 Association: Contingency, Correlation, and Regression Section 3.3 Predicting the Outcome.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 18 Introduction to Simple Linear Regression (Data)Data.
Chapter Describing the Relation between Two Variables © 2010 Pearson Prentice Hall. All rights reserved 3 4.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables
Copyright © Cengage Learning. All rights reserved. 8 9 Correlation and Regression.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
Chapter Describing the Relation between Two Variables © 2010 Pearson Prentice Hall. All rights reserved 3 4.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Describing the Relation between Two Variables 4.
Describing Relationships. Least-Squares Regression  A method for finding a line that summarizes the relationship between two variables Only in a specific.
1 Objective Given two linearly correlated variables (x and y), find the linear function (equation) that best describes the trend. Section 10.3 Regression.
Chapter 13 Linear Regression and Correlation. Our Objectives  Draw a scatter diagram.  Understand and interpret the terms dependent and independent.
Copyright © Cengage Learning. All rights reserved.
Chapter 4 Basic Estimation Techniques
Correlation and Simple Linear Regression
Chapter 5 STATISTICS (PART 4).
Describing the Relation between Two Variables
The Least-Squares Regression Line
STATISTICS INFORMED DECISIONS USING DATA
Correlation and Simple Linear Regression
Describing the Relation between Two Variables
3 9 Chapter Describing the Relation between Two Variables
Simple Linear Regression
Simple Linear Regression
3 4 Chapter Describing the Relation between Two Variables
Correlation and Simple Linear Regression
3 4 Chapter Describing the Relation between Two Variables
Simple Linear Regression and Correlation
3 4 Chapter Describing the Relation between Two Variables
MATH 2311 Section 5.3.
STATISTICS INFORMED DECISIONS USING DATA
Presentation transcript:

Chapter Describing the Relation between Two Variables © 2010 Pearson Prentice Hall. All rights reserved 3 4

Section 4.1 Scatter Diagrams and Correlation 4-2 © 2010 Pearson Prentice Hall. All rights reserved

4-33 © 2010 Pearson Prentice Hall. All rights reserved

4-4 © 2010 Pearson Prentice Hall. All rights reserved

4-55 © 2010 Pearson Prentice Hall. All rights reserved

EXAMPLE Drawing and Interpreting a Scatter Diagram The data shown to the right are based on a study for drilling rock. The researchers wanted to determine whether the time it takes to dry drill a distance of 5 feet in rock increases with the depth at which the drilling begins. So, depth at which drilling begins is the explanatory variable, x, and time (in minutes) to drill five feet is the response variable, y. Draw a scatter diagram of the data. Source: Penner, R., and Watts, D.G. “Mining Information.” The American Statistician, Vol. 45, No. 1, Feb. 1991, p © 2010 Pearson Prentice Hall. All rights reserved

4-7 © 2010 Pearson Prentice Hall. All rights reserved

Various Types of Relations in a Scatter Diagram 4-8 © 2010 Pearson Prentice Hall. All rights reserved

4-9 © 2010 Pearson Prentice Hall. All rights reserved

4-10 © 2010 Pearson Prentice Hall. All rights reserved

4-11 © 2010 Pearson Prentice Hall. All rights reserved

4-12 © 2010 Pearson Prentice Hall. All rights reserved

4-13 © 2010 Pearson Prentice Hall. All rights reserved

4-14 © 2010 Pearson Prentice Hall. All rights reserved

4-15 © 2010 Pearson Prentice Hall. All rights reserved

EXAMPLE Determining the Linear Correlation Coefficient Determine the linear correlation coefficient of the drilling data © 2010 Pearson Prentice Hall. All rights reserved

4-17 © 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

EXAMPLE Does a Linear Relation Exist? Determine whether a linear relation exists between time to drill five feet and depth at which drilling begins. Comment on the type of relation that appears to exist between time to drill five feet and depth at which drilling begins. The correlation between drilling depth and time to drill is The critical value for n = 12 observations is Since > 0.576, there is a positive linear relation between time to drill five feet and depth at which drilling begins © 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

23 According to data obtained from the Statistical Abstract of the United States, the correlation between the percentage of the female population with a bachelor’s degree and the percentage of births to unmarried mothers since 1990 is Does this mean that a higher percentage of females with bachelor’s degrees causes a higher percentage of births to unmarried mothers? Certainly not! The correlation exists only because both percentages have been increasing since It is this relation that causes the high correlation. In general, time series data (data collected over time) will have high correlations because each variable is moving in a specific direction over time (both going up or down over time; one increasing, while the other is decreasing over time). When data are observational, we cannot claim a causal relation exists between two variables. We can only claim causality when the data are collected through a designed experiment © 2010 Pearson Prentice Hall. All rights reserved

Another way that two variables can be related even though there is not a causal relation is through a lurking variable. A lurking variable is related to both the explanatory and response variable. For example, ice cream sales and crime rates have a very high correlation. Does this mean that local governments should shut down all ice cream shops? No! The lurking variable is temperature. As air temperatures rise, both ice cream sales and crime rates rise © 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

This study is a prospective cohort study, which is an observational study. Therefore, the researchers cannot claim that increased cola consumption causes a decrease in bone mineral density. Some lurking variables in the study that could confound the results are: body mass index height smoking alcohol consumption calcium intake physical activity 4-26 © 2010 Pearson Prentice Hall. All rights reserved

Section 4.2 Least-squares Regression © 2010 Pearson Prentice Hall. All rights reserved

(a) Find a linear equation that relates x (the explanatory variable) and y (the response variable) by selecting two points and finding the equation of the line containing the points. Using the following sample data: Using (2, 5.7) and (6, 1.9): © 2010 Pearson Prentice Hall. All rights reserved

(b) Graph the equation on the scatter diagram. (c) Use the equation to predict y if x = © 2010 Pearson Prentice Hall. All rights reserved

4-30 © 2010 Pearson Prentice Hall. All rights reserved

} (3, 5.2) residual = observed y – predicted y = 5.2 – 4.75 = 0.45 The difference between the observed value of y and the predicted value of y is the error, or residual. Using the line from the last example, and the predicted value at x = 3: residual = observed y – predicted y = 5.2 – 4.75 = © 2010 Pearson Prentice Hall. All rights reserved

4-32 © 2010 Pearson Prentice Hall. All rights reserved

4-33 © 2010 Pearson Prentice Hall. All rights reserved

EXAMPLE Finding the Least-squares Regression Line Using the drilling data (a)Find the least-squares regression line. (b)Predict the drilling time if drilling starts at 130 feet. (c)Is the observed drilling time at 130 feet above, or below, average. (d)Draw the least-squares regression line on the scatter diagram of the data © 2010 Pearson Prentice Hall. All rights reserved

(a)We agree to round the estimates of the slope and intercept to four decimal places. (b) (c) The observed drilling time is 6.93 seconds. The predicted drilling time is seconds. The drilling time of 6.93 seconds is below average © 2010 Pearson Prentice Hall. All rights reserved

(d) 4-36 © 2010 Pearson Prentice Hall. All rights reserved

4-37 © 2010 Pearson Prentice Hall. All rights reserved

4-38 Interpretation of Slope: The slope of the regression line is For each additional foot of depth we start drilling, the time to drill five feet increases by minutes, on average. Interpretation of the y-Intercept: The y-intercept of the regression line is To interpret the y-intercept, we must first ask two questions: 1. Is 0 a reasonable value for the explanatory variable? 2. Do any observations near x = 0 exist in the data set? A value of 0 is reasonable for the drilling data (this indicates that drilling begins at the surface of Earth. The smallest observation in the data set is x = 35 feet, which is reasonably close to 0. So, interpretation of the y-intercept is reasonable. The time to drill five feet when we begin drilling at the surface of Earth is minutes. © 2010 Pearson Prentice Hall. All rights reserved

If the least-squares regression line is used to make predictions based on values of the explanatory variable that are much larger or much smaller than the observed values, we say the researcher is working outside the scope of the model. Never use a least-squares regression line to make predictions outside the scope of the model because we can’t be sure the linear relation continues to exist © 2010 Pearson Prentice Hall. All rights reserved

4-40 © 2010 Pearson Prentice Hall. All rights reserved

4-41 To illustrate the fact that the sum of squared residuals for a least-squares regression line is less than the sum of squared residuals for any other line, use the “regression by eye” applet. © 2010 Pearson Prentice Hall. All rights reserved

Section 4.3 The Coefficient of Determination © 2010 Pearson Prentice Hall. All rights reserved

© 2010 Pearson Prentice Hall. All rights reserved

The coefficient of determination, R 2, measures the proportion of total variation in the response variable that is explained by the least-squares regression line The coefficient of determination is a number between 0 and 1, inclusive. That is, 0 < R 2 < 1. If R 2 = 0 the line has no explanatory value If R 2 = 1 means the line variable explains 100% of the variation in the response variable. 44 © 2010 Pearson Prentice Hall. All rights reserved

The data to the right are based on a study for drilling rock. The researchers wanted to determine whether the time it takes to dry drill a distance of 5 feet in rock increases with the depth at which the drilling begins. So, depth at which drilling begins is the predictor variable, x, and time (in minutes) to drill five feet is the response variable, y. Source: Penner, R., and Watts, D.G. “Mining Information.” The American Statistician, Vol. 45, No. 1, Feb. 1991, p © 2010 Pearson Prentice Hall. All rights reserved

4-46 © 2010 Pearson Prentice Hall. All rights reserved

Regression Analysis The regression equation is Time = Depth Sample Statistics Mean Standard Deviation Depth Time Correlation Between Depth and Time: © 2010 Pearson Prentice Hall. All rights reserved

Suppose we were asked to predict the time to drill an additional 5 feet, but we did not know the current depth of the drill. What would be our best “guess”? 4-48 © 2010 Pearson Prentice Hall. All rights reserved

Suppose we were asked to predict the time to drill an additional 5 feet, but we did not know the current depth of the drill. What would be our best “guess”? ANSWER: The mean time to drill an additional 5 feet: 6.99 minutes 4-49 © 2010 Pearson Prentice Hall. All rights reserved

Now suppose that we are asked to predict the time to drill an additional 5 feet if the current depth of the drill is 160 feet? ANSWER: Our “guess” increased from 6.99 minutes to 7.39 minutes based on the knowledge that drill depth is positively associated with drill time © 2010 Pearson Prentice Hall. All rights reserved

4-51 © 2010 Pearson Prentice Hall. All rights reserved

The difference between the observed value of the response variable and the mean value of the response variable is called the total deviation and is equal to 4-52 © 2010 Pearson Prentice Hall. All rights reserved

The difference between the predicted value of the response variable and the mean value of the response variable is called the explained deviation and is equal to 4-53 © 2010 Pearson Prentice Hall. All rights reserved

The difference between the observed value of the response variable and the predicted value of the response variable is called the unexplained deviation and is equal to 4-54 © 2010 Pearson Prentice Hall. All rights reserved

4-55 © 2010 Pearson Prentice Hall. All rights reserved

Total Variation = Unexplained Variation + Explained Variation 4-56 © 2010 Pearson Prentice Hall. All rights reserved

Total Variation = Unexplained Variation + Explained Variation 1 = Unexplained VariationExplained Variation Unexplained Variation Explained Variation Total Variation + = 1 – 4-57 © 2010 Pearson Prentice Hall. All rights reserved

To determine R 2 for the linear regression model simply square the value of the linear correlation coefficient © 2010 Pearson Prentice Hall. All rights reserved

EXAMPLE Determining the Coefficient of Determination Find and interpret the coefficient of determination for the drilling data. Because the linear correlation coefficient, r, is 0.773, we have that R 2 = = = 59.75%. So, 59.75% of the variability in drilling time is explained by the least-squares regression line © 2010 Pearson Prentice Hall. All rights reserved

Draw a scatter diagram for each of these data sets. For each data set, the variance of y is © 2010 Pearson Prentice Hall. All rights reserved

Data Set A Data Set B Data Set C 4-61 © 2010 Pearson Prentice Hall. All rights reserved