CAUSES AND COUNTERFACTUALS Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea/jsm09)

Slides:



Advertisements
Similar presentations
Department of Computer Science
Advertisements

From Propensity Scores And Mediation To External Validity
Naïve Bayes. Bayesian Reasoning Bayesian reasoning provides a probabilistic approach to inference. It is based on the assumption that the quantities of.
RELATED CLASS CS 262 Z – SEMINAR IN CAUSAL MODELING CURRENT TOPICS IN COGNITIVE SYSTEMS INSTRUCTOR: JUDEA PEARL Spring Quarter Monday and Wednesday, 2-4pm.
The World Bank Human Development Network Spanish Impact Evaluation Fund.
1 WHAT'S NEW IN CAUSAL INFERENCE: From Propensity Scores And Mediation To External Validity Judea Pearl University of California Los Angeles (
ASSESSING CAUSAL QUANTITIES FROM EXPERIMENTAL AND NONEXPERIMENTAL DATA Judea Pearl Computer Science and Statistics UCLA
Omitted Variable Bias Methods of Economic Investigation Lecture 7 1.
1 THE SYMBIOTIC APPROACH TO CAUSAL INFERENCE Judea Pearl University of California Los Angeles (
Linear Regression and Binary Variables The independent variable does not necessarily need to be continuous. If the independent variable is binary (e.g.,
TRYGVE HAAVELMO AND THE EMERGENCE OF CAUSAL CALCULUS Judea Pearl University of California Los Angeles (
THE MATHEMATICS OF CAUSAL MODELING Judea Pearl Department of Computer Science UCLA.
COMMENTS ON By Judea Pearl (UCLA). notation 1990’s Artificial Intelligence Hoover.
Chapter 51 Experiments, Good and Bad. Chapter 52 Experimentation u An experiment is the process of subjecting experimental units to treatments and observing.
Judea Pearl University of California Los Angeles CAUSAL REASONING FOR DECISION AIDING SYSTEMS.
Today Concepts underlying inferential statistics
CS Bayesian Learning1 Bayesian Learning. CS Bayesian Learning2 States, causes, hypotheses. Observations, effect, data. We need to reconcile.
1 CAUSAL INFERENCE: MATHEMATICAL FOUNDATIONS AND PRACTICAL APPLICATIONS Judea Pearl University of California Los Angeles (
SIMPSON’S PARADOX, ACTIONS, DECISIONS, AND FREE WILL Judea Pearl UCLA
CAUSES AND COUNTERFACTUALS OR THE SUBTLE WISDOM OF BRAINLESS ROBOTS.
1 WHAT'S NEW IN CAUSAL INFERENCE: From Propensity Scores And Mediation To External Validity Judea Pearl University of California Los Angeles (
CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES Judea Pearl University of California Los Angeles (
1 REASONING WITH CAUSES AND COUNTERFACTUALS Judea Pearl UCLA (
Judea Pearl Computer Science Department UCLA DIRECT AND INDIRECT EFFECTS.
Judea Pearl University of California Los Angeles ( THE MATHEMATICS OF CAUSE AND EFFECT.
Judea Pearl University of California Los Angeles ( THE MATHEMATICS OF CAUSE AND EFFECT.
THE MATHEMATICS OF CAUSE AND EFFECT: With Reflections on Machine Learning Judea Pearl Departments of Computer Science and Statistics UCLA.
Various topics Petter Mostad Overview Epidemiology Study types / data types Econometrics Time series data More about sampling –Estimation.
Estimating Causal Effects from Large Data Sets Using Propensity Scores Hal V. Barron, MD TICR 5/06.
V13: Causality Aims: (1) understand the causal relationships between the variables of a network (2) interpret a Bayesian network as a causal model whose.
ECON 3039 Labor Economics By Elliott Fan Economics, NTU Elliott Fan: Labor 2015 Fall Lecture 21.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Developing and Evaluating Theories of Behavior.
REASONING WITH CAUSE AND EFFECT Judea Pearl Department of Computer Science UCLA.
Propensity Score Matching for Causal Inference: Possibilities, Limitations, and an Example sean f. reardon MAPSS colloquium March 6, 2007.
BIOST 536 Lecture 11 1 Lecture 11 – Additional topics in Logistic Regression C-statistic (“concordance statistic”)  Same as Area under the curve (AUC)
QM Spring 2002 Business Statistics Probability Distributions.
Uncertainty Management in Rule-based Expert Systems
Chapter 11 Statistical Techniques. Data Warehouse and Data Mining Chapter 11 2 Chapter Objectives  Understand when linear regression is an appropriate.
CAUSES AND COUNTERFACTIALS IN THE EMPIRICAL SCIENCES Judea Pearl University of California Los Angeles (
REASONING WITH CAUSE AND EFFECT Judea Pearl Department of Computer Science UCLA.
Conditional Probability Mass Function. Introduction P[A|B] is the probability of an event A, giving that we know that some other event B has occurred.
THE MATHEMATICS OF CAUSE AND COUNTERFACTUALS Judea Pearl University of California Los Angeles (
Chapter 8: Simple Linear Regression Yang Zhenlin.
Impact Evaluation Sebastian Galiani November 2006 Causal Inference.
Judea Pearl Computer Science Department UCLA ROBUSTNESS OF CAUSAL CLAIMS.
CAUSAL REASONING FOR DECISION AIDING SYSTEMS COGNITIVE SYSTEMS LABORATORY UCLA Judea Pearl, Mark Hopkins, Blai Bonet, Chen Avin, Ilya Shpitser.
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Mediation: The Causal Inference Approach David A. Kenny.
1 CONFOUNDING EQUIVALENCE Judea Pearl – UCLA, USA Azaria Paz – Technion, Israel (
Statistical NLP: Lecture 4 Mathematical Foundations I: Probability Theory (Ch2)
Causality and Identification in Structural Econometrics Causality and Probability in the Sciences University of Kent, Canterbury September Damien.
Summary: connecting the question to the analysis(es) Jay S. Kaufman, PhD McGill University, Montreal QC 26 February :40 PM – 4:20 PM National Academy.
Copyright © 2015 Inter-American Development Bank. This work is licensed under a Creative Commons IGO 3.0 Attribution-Non Commercial-No Derivatives (CC-IGO.
Variable selection in Regression modelling Simon Thornley.
Identification in Econometrics: A Way to Get Causal Information from Observations? Damien Fennell, LSE UCL, May 27, 2005.
AP Statistics From Randomness to Probability Chapter 14.
CAUSAL INFERENCE IN STATISTICS: A Gentle Introduction Judea Pearl Departments of Computer Science and Statistics UCLA.
Department of Computer Science
Chen Avin Ilya Shpitser Judea Pearl Computer Science Department UCLA
Department of Computer Science
A MACHINE LEARNING EXERCISE
Computer Science and Statistics
CAUSAL INFERENCE IN STATISTICS
From Propensity Scores And Mediation To External Validity
THE MATHEMATICS OF PROGRAM EVALUATION
Counterfactual models Time dependent confounding
Department of Computer Science
CAUSAL REASONING FOR DECISION AIDING SYSTEMS
Björn Bornkamp, Georgina Bermann
Chapter 3 Hernán & Robins Observational Studies
Presentation transcript:

CAUSES AND COUNTERFACTUALS Judea Pearl University of California Los Angeles (

THEORETICAL DEVELOPMENTS IN CAUSAL INFERENCE Judea Pearl University of California Los Angeles (

Inference: Statistical vs. Causal, distinctions, and mental barriers Unified conceptualization of counterfactuals, structural-equations, and graphs Inference to three types of claims: 1.Effect of potential interventions 2.Attribution (Causes of Effects) 3.Direct and indirect effects Frills OUTLINE

TRADITIONAL STATISTICAL INFERENCE PARADIGM Data Inference Q(P) (Aspects of P ) P Joint Distribution e.g., Infer whether customers who bought product A would also buy product B. Q = P(B | A)

What happens when P changes? e.g., Infer whether customers who bought product A would still buy A if we were to double the price. FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES Probability and statistics deal with static relations Data Inference Q( P ) (Aspects of P ) P Joint Distribution P Joint Distribution change

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES Note: P (v)  P (v | price = 2) P does not tell us how it ought to change e.g. Curing symptoms vs. curing diseases e.g. Analogy: mechanical deformation What remains invariant when P changes say, to satisfy P (price=2)=1 Data Inference Q( P ) (Aspects of P ) P Joint Distribution P Joint Distribution change

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES (CONT) CAUSAL Spurious correlation Randomization / Intervention Confounding / Effect Instrumental variable Strong Exogeneity Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility / Granger causality Propensity score 1.Causal and statistical concepts do not mix

CAUSAL Spurious correlation Randomization / Intervention Confounding / Effect Instrumental variable Strong Exogeneity Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility / Granger causality Propensity score 1.Causal and statistical concepts do not mix Causal assumptions cannot be expressed in the mathematical language of standard statistics. FROM STATISTICAL TO CAUSAL ANALYSIS: 2. MENTAL BARRIERS 2.No causes in – no causes out (Cartwright, 1989) statistical assumptions + data causal assumptions causal conclusions  }

4.Non-standard mathematics: a)Structural equation models (Wright, 1920; Simon, 1960) b)Counterfactuals (Neyman-Rubin (Y x ), Lewis (x Y)) CAUSAL Spurious correlation Randomization / Intervention Confounding / Effect Instrumental variable Strong Exogeneity Explanatory variables STATISTICAL Regression Association / Independence “Controlling for” / Conditioning Odd and risk ratios Collapsibility / Granger causality Propensity score 1.Causal and statistical concepts do not mix. 3.Causal assumptions cannot be expressed in the mathematical language of standard statistics. FROM STATISTICAL TO CAUSAL ANALYSIS: 2. MENTAL BARRIERS 2.No causes in – no causes out (Cartwright, 1989) statistical assumptions + data causal assumptions causal conclusions  }

Y = 2X WHY CAUSALITY NEEDS SPECIAL MATHEMATICS Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must “wipe out” X = 1. X = 1 Y = 2 The solution Process information Y : = 2X Correct notation: X = 1 e.g., Length (Y) equals a constant (2) times the weight (X) Scientific Equations (e.g., Hooke’s Law) are non-algebraic

Y  2X (or) WHY CAUSALITY NEEDS SPECIAL MATHEMATICS Process information Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must “wipe out” X = 1. Correct notation: X = 1 Y = 2 The solution e.g., Length (Y) equals a constant (2) times the weight (X) Scientific Equations (e.g., Hooke’s Law) are non-algebraic

Data Inference Q(M) (Aspects of M ) Data Generating Model M – Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis. Joint Distribution THE STRUCTURAL MODEL PARADIGM M “Think Nature, not experiment!”

Z Y X INPUTOUTPUT FAMILIAR CAUSAL MODEL ORACLE FOR MANIPILATION

STRUCTURAL CAUSAL MODELS Definition: A structural causal model is a 4-tuple  V,U, F, P(u) , where V = {V 1,...,V n } are endogeneas variables U = {U 1,...,U m } are background variables F = {f 1,..., f n } are functions determining V, v i = f i (v, u) P(u) is a distribution over U P(u) and F induce a distribution P(v) over observable variables e.g.,

STRUCTURAL MODELS AND CAUSAL DIAGRAMS The functions v i = f i (v,u) define a graph v i = f i (pa i,u i ) PA i  V \ V i U i  U Example: Price – Quantity equations in economics U1U1 U2U2 IW Q P PA Q

U1U1 U2U2 IW Q P Let X be a set of variables in V. The action do(x) sets X to constants x regardless of the factors which previously determined X. do ( x ) replaces all functions f i determining X with the constant functions X=x, to create a mutilated model M x STRUCTURAL MODELS AND INTERVENTION

U1U1 U2U2 IW Q P P = p 0 MpMp Let X be a set of variables in V. The action do(x) sets X to constants x regardless of the factors which previously determined X. do ( x ) replaces all functions f i determining X with the constant functions X=x, to create a mutilated model M x STRUCTURAL MODELS AND INTERVENTION

CAUSAL MODELS AND COUNTERFACTUALS Definition: The sentence: “ Y would be y (in situation u ), had X been x,” denoted Y x (u) = y, means: The solution for Y in a mutilated model M x, (i.e., the equations for X replaced by X = x ) with input U=u, is equal to y. The Fundamental Equation of Counterfactuals:

In particular: CAUSAL MODELS AND COUNTERFACTUALS Definition: The sentence: “ Y would be y (in situation u ), had X been x,” denoted Y x (u) = y, means: The solution for Y in a mutilated model M x, (i.e., the equations for X replaced by X = x ) with input U=u, is equal to y. Joint probabilities of counterfactuals:

w STRUCTURAL AND SIMILARITY-BASED COUNTERFACTUALS Lewis’s account (1973): The counterfactual A  B (read: “ B if it were A ”) is true in a world w just in case B is true in all the closest A -worlds to w. Structural account (1995): The counterfactual Y x ( u ) =y (read: “ Y=y if X were x ”) is true in situation u just in case Y M x ( u ) =y. B A

w w'w' w'w' w BAYESIAN AND IMAGING CONDITIONALIZATIONS The do ( x ) operator is an imaging operator provided: Provision 1: Worlds with equal histories should be considered equally similar to any given world. Provision 2: Equally-similar worlds should receive mass in proportion to their prior probabilities (Bayesian tie-breaking) X  x X = x X  x X = x Sx(w)Sx(w) Sx(w )Sx(w ) Bayes Imaging

AXIOMS OF STRUCTURAL COUNTERFACTUALS 1.Definiteness 2.Uniqueness 3.Effectiveness 4.Composition (generalized consistency) 5.Reversibility Y x (u)=y: Y would be y, had X been x (in state U = u ) (Galles, Pearl, Halpern, 1998):

REGRESSION VS. STRUCTURAL EQUATIONS (THE CONFUSION OF THE CENTURY) Regression (claimless, nonfalsifiable): Y = ax +  Y Structural (empirical, falsifiable): Y = bx + u Y Claim: (regardless of distributions): E(Y | do(x)) = E(Y | do(x), do(z)) = bx Q. When is b estimable by regression methods? A. Graphical criteria available  The mothers of all questions: Q. When would b equal a ? A. When all back-door paths are blocked, ( u Y X )

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS OF CAUSAL ANALYSIS Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS FOR EFFECT ESTIMATION Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS FOR EFFECT ESTIMATION Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS FOR POLICY ANALYSIS Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS FOR POLICY ANALYSIS Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

The problem: To predict the impact of a proposed intervention using data obtained prior to the intervention. The solution (conditional): Causal Assumptions + Data  Policy Claims 1.Mathematical tools for communicating causal assumptions formally and transparently. 2.Deciding (mathematically) whether the assumptions communicated are sufficient for obtaining consistent estimates of the prediction required. 3.Deriving (if (2) is affirmative) a closed-form expression for the predicted impact INFERRING THE EFFECT OF INTERVENTIONS 4.Suggesting (if (2) is negative) a set of measurements and experiments that, if performed, would render a consistent estimate feasible.

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS FROM DEFINITION TO ASSUMPTIONS Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

FORMULATING ASSUMPTIONS THREE LANGUAGES 1. English: Smoking ( X ), Cancer ( Y ), Tar ( Z ), Genotypes ( U ) Not too friendly: Consistent?, complete?, redundant?, arguable? ZXY 3. Structural: 2. Counterfactuals:

IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, and let A be a set of assumption. Q is identifiable relative to A iff for all M 1, M 2, that satisfy A. P(M 1 ) = P(M 2 )   Q( M 1 ) = Q( M 2 )

A is displayed in graph G.IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, and let A be a set of assumption. Q is identifiable relative to A iff In other words, Q can be determined uniquely from the probability distribution P(v) of the endogenous variables, V, and assumptions A. P(M 1 ) = P(M 2 )   Q( M 1 ) = Q( M 2 ) for all M 1, M 2, that satisfy A.

THE PROBLEM OF CONFOUNDING Find the effect of X on Y, P ( y | do ( x )), given the causal assumptions shown in G, where Z 1,..., Z k are auxiliary variables. Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 G Can P ( y | do ( x )) be estimated if only a subset, Z, can be measured?

ELIMINATING CONFOUNDING BIAS THE BACK-DOOR CRITERION P(y | do(x)) is estimable if there is a set Z of variables such that Z d -separates X from Y in G x. Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 Z Moreover, P(y | do(x)) =   P(y | x,z) P(z) (“adjusting” for Z ) z GxGx G

EFFECT OF INTERVENTION BEYOND ADJUSTMENT Theorem (Tian-Pearl 2002) We can identify P ( y | do ( x )) if there is no child Z of X connected to X by a confounding path. Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 G

Front Door EFFECT OF WARM-UP ON INJURY (After Shrier & Platt, 2008) No, no! Watch out! Warm-up Exercises ( X ) Injury ( Y ) ???

Complete calculus for reducing P ( y | do ( x ), z ) to expressions void of do -operators. Complete graphical criterion for identifying causal effects (Shpitser and Pearl, 2006). Complete graphical criterion for empirical testability of counterfactuals (Shpitser and Pearl, 2007). EFFECT OF INTERVENTION COMPLETE IDENTIFICATION

1.Regret: I took a pill to fall asleep. Perhaps I should not have? 2.Program evaluation: What would terminating a program do to those enrolled? COUNTERFACTUALS AT WORK ETT – EFFECT OF TREATMENT ON THE TREATED

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS EFFECT OF TREATMENT ON THE TREATED Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

ETT - IDENTIFICATION Theorem (Shpitser-Pearl, 2009) ETT is identifiable in G iff P ( y | do ( x ), w ) is identifiable in G Moreover, Complete graphical criterion X Y W

ETT - THE BACK-DOOR CRITERION is identifiable in G if there is a set Z of variables such that Z d -separates X from Y in G x. Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 Z GxGx G Moreover, ETT “Standardized morbidity”

Define: Assume: Identify: Estimate: FROM IDENTIFICATION TO ESTIMATION Express the target quantity Q as a function Q ( M ) that can be computed from any model M. Formulate causal assumptions using ordinary scientific language and represent their structural part in graphical form. Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

PROPENSITY SCORE ESTIMATOR (Rosenbaum & Rubin, 1983) Z6Z6 Z3Z3 Z2Z2 Z5Z5 Z1Z1 X Y Z4Z4 L Adjustment for L replaces Adjustment for Z Theorem: P(y | do(x)) = ?

WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW 1.The assymptotic bias of PS is EQUAL to that of ordinary adjustment (for same Z ). 2.Including an additional covariate in the analysis CAN SPOIL the bias-reduction potential of others. 3.Choosing sufficient set for PS, requires knowledge about the model.

Outcome Hygiene WHICH COVARIATES MAY / SHOULD BE ADJUSTED FOR? Question: Which of these eight covariates may be included in the propensity score function (for matching) and which should be excluded. Answer: Must include: Must exclude: May include: Assignment B1B1 Treatment M CostFollow-up B2B2 Age Age B 1, M, B 2, Follow-up, Assignment without Age Cost, Hygiene, {Assignment + Age}, {Hygiene + Age + B 1 }, more...

Outcome Hygiene WHICH COVARIATES MAY / SHOULD BE ADJUSTED FOR? Question: Which of these eight covariates may be included in the propensity score function (for matching) and which should be excluded. Answer: Must include: Must exclude: May include: Assignment B1B1 Treatment M CostFollow-up B2B2 Age Age B 1, M, B 2, Follow-up, Assignment without Age Cost, Hygiene, {Assignment + Age}, {Hygiene + Age + B 1 }, more...

WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW 1.The assymptotic bias of PS is EQUAL to that of ordinary adjustment (for same Z ). 2.Including an additional covariate in the analysis CAN SPOIL the bias-reduction potential of others. 3.Choosing sufficient set for PS, requires knowledge about the model. 4.That any empirical test of the bias-reduction potential of PS, can only be generalized to cases where the causal relationships among covariates, observed and unobserved is the same.

TWO PARADIGMS FOR CAUSAL INFERENCE Observed: P(X, Y, Z,...) Conclusions needed: P(Y x =y), P(X y =x | Z=z)... How do we connect observables, X,Y,Z,… to counterfactuals Y x, X z, Z y,… ? N-R model Counterfactuals are primitives, new variables Super-distribution Structural model Counterfactuals are derived quantities Subscripts modify the model and distribution

“SUPER” DISTRIBUTION IN N-R MODEL X X Y Y Y x= Z Z Y x= X z= X z= X y=0  0  1  1  0  Uu1 u2 u3 u4 Uu1 u2 u3 u4 inconsistency: x = 0  Y x=0 = Y Y = xY 1 + (1-x) Y 0

Define: Assume: Identify: Estimate: THE FOUR NECESSARY STEPS IN POTENTIAL-OUTCOME FRAMEWORK Express the target quantity Q as a counterfactual formula Formulate causal assumptions using the distribution: Determine if Q is identifiable. Estimate Q if it is identifiable; approximate it, if it is not.

GRAPHICAL – COUNTERFACTUALS SYMBIOSIS Every causal graph expresses counterfactuals assumptions, e.g., X  Y  Z consistent, and readable from the graph. Every theorem in SCM is a theorem in Potential-Outcome Model, and conversely. 1.Missing arrows Y  Z 2. Missing arcs YZ

DEMYSTIFYING STRONG IGNORABILITY (Ignorability) (Z-admissibility) (Back-door) Is there a W in G such that ( W X | Z ) G  Ignorability?

DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem) Your Honor! My client (Mr. A) died BECAUSE he used that drug.

DETERMINING THE CAUSES OF EFFECTS (The Attribution Problem) Your Honor! My client (Mr. A) died BECAUSE he used that drug. Court to decide if it is MORE PROBABLE THAN NOT that A would be alive BUT FOR the drug! P (? | A is dead, took the drug) > 0.50 PN =

THE ATTRIBUTION PROBLEM Definition: 1.What is the meaning of PN(x,y): “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.” Answer: Computable from M

THE ATTRIBUTION PROBLEM Definition: 1.What is the meaning of PN(x,y): “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.” 2.Under what condition can PN(x,y) be learned from statistical data, i.e., observational, experimental and combined. Identification:

TYPICAL THEOREMS (Tian and Pearl, 2000) Bounds given combined nonexperimental and experimental data Identifiability under monotonicity (Combined data) corrected Excess-Risk-Ratio

CAN FREQUENCY DATA DECIDE LEGAL RESPONSIBILITY? Nonexperimental data: drug usage predicts longer life Experimental data: drug has negligible effect on survival ExperimentalNonexperimental do(x) do(x) x x Deaths (y) Survivals (y) ,0001,0001,0001,000 1.He actually died 2.He used the drug by choice Court to decide (given both data): Is it more probable than not that A would be alive but for the drug? Plaintiff: Mr. A is special.

SOLUTION TO THE ATTRIBUTION PROBLEM WITH PROBABILITY ONE 1  P(y x | x,y)  1 Combined data tell more that each study alone

EFFECT DECOMPOSITION (direct vs. indirect effects) 1.Why decompose effects? 2.What is the definition of direct and indirect effects? 3.What are the policy implications of direct and indirect effects? 4.When can direct and indirect effect be estimated consistently from experimental and nonexperimental data?

WHY DECOMPOSE EFFECTS? 1.To understand how Nature works 2.To comply with legal requirements 3.To predict the effects of new type of interventions: Signal routing, rather than variable fixing

XZ Y LEGAL IMPLICATIONS OF DIRECT EFFECT What is the direct effect of X on Y ? (averaged over z ) (Qualifications) (Hiring) (Gender) Can data prove an employer guilty of hiring discrimination? Adjust for Z? No! No!

z = f (x, u) y = g (x, z, u) XZ Y NATURAL INTERPRETATION OF AVERAGE DIRECT EFFECTS Natural Direct Effect of X on Y: The expected change in Y, when we change X from x 0 to x 1 and, for each u, we keep Z constant at whatever value it attained before the change. In linear models, DE = Controlled Direct Effect Robins and Greenland (1992) – “Pure”

DEFINITION AND IDENTIFICATION OF NESTED COUNTERFACTUALS Consider the quantity Given  M, P(u) , Q is well defined Given u, Z x * (u) is the solution for Z in M x *, call it z is the solution for Y in M xz Can Q be estimated from data? Experimental: nest-free expression Nonexperimental: subscript-free expression

z = f (x, u) y = g (x, z, u) XZ Y DEFINITION OF INDIRECT EFFECTS Indirect Effect of X on Y: The expected change in Y when we keep X constant, say at x 0, and let Z change to whatever value it would have attained had X changed to x 1. In linear models, IE = TE - DE

POLICY IMPLICATIONS OF INDIRECT EFFECTS f GENDERQUALIFICATION HIRING What is the indirect effect of X on Y? The effect of Gender on Hiring if sex discrimination is eliminated. XZ Y IGNORE Blocking a link – a new type of intervention

Is identifiable from experimental data and is given by Theorem: If there exists a set W such that EXPERIMENTAL IDENTIFICATION OF NATURAL DIRECT EFFECTS Then the average direct effect

Example: Theorem: If there exists a set W such that GRAPHICAL CONDITION FOR EXPERIMENTAL IDENTIFICATION OF DIRECT EFFECTS then,

1.The natural direct and indirect effects are identifiable in Markovian models, 2.And are given by: 3.All do -expressions are estimable by regression. MEDIATION FORMULAS

I TOLD YOU CAUSALITY IS SIMPLE Formal basis for causal and counterfactual inference (complete) Unification of the graphical, potential-outcome and structural equation approaches Friendly and formal solutions to century-old problems and confusions. He is wise who bases causal inference on an explicit causal structure that is defensible on scientific grounds. (Aristotle B.C.) From Charlie Poole CONCLUSIONS

They will be answered QUESTIONS???

The Fundamental Equation of Counterfactuals: The empirical claim of CAUSAL MODELS AND COUNTERFACTUALS Definition: The sentence: “ Y would be y (in situation u ), had X been x,” denoted Y x (u) = y, means: The solution for Y in a mutilated model M x, (i.e., the equations for X replaced by X = x ) with input U=u, is equal to y. The empirical claim of

IDENTIFIABILITY Definition: Let Q(M) be any quantity defined on a causal model M, and let A be a set of assumption. Q is identifiable relative to A iff for all M 1, M 2, that satisfy A. P(M 1 ) = P(M 2 )   Q( M 1 ) = Q( M 2 ) A: Assumptions encoded in the diagram Q 1 : P(y|do(x)) Causal Effect (= P(Y x = y) ) Q 2 : P(Y x  = y | x, y) Probability of necessity Q 3 : Direct Effect In this talk: Q 4 : P ( Y x = y | x ) ETT

THE FUNDAMENTAL THEOREM OF CAUSAL INFERENCE Causal Markov Theorem: Any distribution generated by Markovian structural model M (recursive, with independent disturbances) can be factorized as Where pa i are the (values of) the parents of V i in the causal diagram associated with M.

THE FUNDAMENTAL THEOREM OF CAUSAL INFERENCE Causal Markov Theorem: Any distribution generated by Markovian structural model M (recursive, with independent disturbances) can be factorized as Where pa i are the (values of) the parents of V i in the causal diagram associated with M. Corollary-1: (Truncated factorization, Manipulation Theorem) The distribution generated by an intervention do(X=x) (in a Markovian model M) is given by the truncated factorization ( G -estimation)

THE FUNDAMENTAL THEOREM OF CAUSAL INFERENCE Causal Markov Theorem: Any distribution generated by Markovian structural model M (recursive, with independent disturbances) can be factorized as Where pa i are the (values of) the parents of V i in the causal diagram associated with M. Corollary-2: (Parents adjustment formula) The causal effect of X on Y, P ( Y = y | do ( X = x ) (in a Markovian model M ) is given by

INFERENCE ACROSS DESIGNS Problem: Predict P ( y | do ( x )) from a study in which only Z can be controlled. Solution: Determine if P ( y | do ( x )) can be reduced to a mathematical expression involving only do ( z ).

RULES OF CAUSAL CALCULUS Rule 1: Ignoring observations P(y | do{x}, z, w) = P(y | do{x}, w) Rule 2: Action/observation exchange P(y | do{x}, do{z}, w) = P(y | do{x},z,w) Rule 3: Ignoring actions P(y | do{x}, do{z}, w) = P(y | do{x}, w)

DERIVATION IN CAUSAL CALCULUS Smoking Tar Cancer P (c | do{s}) =  t P (c | do{s}, t) P (t | do{s}) =  s   t P (c | do{t}, s) P (s | do{t}) P(t |s) =  t P (c | do{s}, do{t}) P (t | do{s}) =  t P (c | do{s}, do{t}) P (t | s) =  t P (c | do{t}) P (t | s) =  s  t P (c | t, s) P (s) P(t |s) =  s   t P (c | t, s) P (s | do{t}) P(t |s) Probability Axioms Rule 2 Rule 3 Rule 2 Genotype (Unobserved)

THE CAUSAL RENAISSANCE: VOCABULARY IN ECONOMICS From Hoover (2004) “Lost Causes”

THE CAUSAL RENAISSANCE: USEFUL RESULTS 1.Complete formal semantics of counterfactuals 2.Transparent language for expressing assumptions 3.Complete solution to causal-effect identification 4.Legal responsibility (bounds) 5.Imperfect experiments (universal bounds for IV) 6.Integration of data from diverse sources 7.Direct and Indirect effects, 8.Complete criterion for counterfactual testability 7.Direct and Indirect effects,

THE PROBLEM Semantical Problem: 1.What is the meaning of PN(x,y): “Probability that event y would not have occurred if it were not for event x, given that x and y did in fact occur.”

Theorem 5: The total, direct and indirect effects obey The following equality In words, the total effect (on Y) associated with the transition from x * to x is equal to the difference between the direct effect associated with this transition and the indirect effect associated with the reverse transition, from x to x *. RELATIONS BETWEEN TOTAL, DIRECT, AND INDIRECT EFFECTS

Y Z X W x*x* z * = Z x* (u) Nonidentifiable even in Markovian models GENERAL PATH-SPECIFIC EFFECTS (Def.) Y Z X W Form a new model,, specific to active subgraph g Definition: g -specific effect

SUMMARY OF RESULTS 1.Formal semantics of path-specific effects, based on signal blocking, instead of value fixing. 2.Path-analytic techniques extended to nonlinear and nonparametric models. 3.Meaningful (graphical) conditions for estimating direct and indirect effects from experimental and nonexperimental data.

WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW 1.The assymptotic bias of PS is EQUAL to that of ordinary adjustment (for same S ). 2.Including an additional covariate in the analysis CAN SPOIL the bias-reduction potential of others. 3.Choosing sufficient set for PS, if one knows something about the model is a solved problem. 4.That any empirical test of the bias-reduction potential of PS, can only be generalized to cases where the causal relationships among covariates, observed and unobserved is the same.