The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna.

Slides:



Advertisements
Similar presentations
The Thick Disks of Spiral Galaxies as Relics from Gas-Rich, Turbulent, Clumpy Disks at High Redshifts Frédéric Bournaud, Bruce G. Elmegreen, and Marie.
Advertisements

Introduction to Astrophysics
THE BOOTIS STAR HD A CANDIDATE FOR THE EXPLORATORY PROGRAMME Ernst Paunzen IfA, University Vienna.
Star Birth How do stars form? What is the maximum mass of a new star? What is the minimum mass of a new star?
Stellar Evolution. Evolution on the Main Sequence Zero-Age Main Sequence (ZAMS) MS evolution Development of an isothermal core: dT/dr = (3/4ac) (  r/T.
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Lecture I: Introduction to White Dwarfs S. R. Kulkarni, E. Ofek
Astronomical Distances or Measuring the Universe The Problems by Rastorguev Alexey, professor of the Moscow State University and Sternberg Astronomical.
Galaxy Formation and Evolution Open Problems Alessandro Spagna Osservatorio Astronomico di Torino Torino, 18 Febbraio 2002.
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
Edo Berger Carnegie Observatories Edo Berger Carnegie Observatories Probing Stellar to Galactic Scales with Gamma-Ray Bursts.
The A-star puzzle Poprad, Slovakia A-type stars as physics laboratories John D. Landstreet Department of Physics & Astronomy University of Western Ontario.
3-D Simulations of Magnetized Super Bubbles J. M. Stil N. D. Wityk R. Ouyed A. R. Taylor Department of Physics and Astronomy, The University of Calgary,
SOLUTION 1: ECLIPSING BINARIES IN OPEN CLUSTERS The study of eclipsing binaries in open clusters allows strong constraints to be placed on theoretical.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
The Formation and Structure of Stars
The Formation and Structure of Stars
The Effects of Mass Loss on the Evolution of Chemical Abundances in Fm Stars Mathieu Vick 1,2 Georges Michaud 1 (1)Département de physique, Université.
Exoplanet Transits with mini-SONG Licai NAOC Presented for the NJU group.
Nuno C. Santos Cool Stars 13 - Hamburg, Germany - July2004 Spectroscopic characteristics of planet-host stars and their planets Nuno C. Santos (Observatory.
Nov. 6, 2008Thanks to Henrietta Leavitt Cepheid Multiplicity and Masses: Fundamental Parameters Nancy Remage Evans.
Numerical Modeling of Hierarchical Galaxy Formation Cole, S. et al. 2000, MNRAS 319, Adam Trotter December 4, 2007 Astronomy 704, UNC-Chapel Hill,
Jonathan Slavin Harvard-Smithsonian CfA
Formation of Mercury By Triana Henz. In the beginning… There was a giant cloud of particles within the Milky Way Particles start to rotate The cloud starts.
Chemically Peculiar/Magnetic Stars and the  a photometry Hans Michael Maitzen, Ernst Paunzen Institute for Astronomy, University of Vienna.
Marc Pinsonneault (OSU).  New Era in Astronomy  Seismology  Large Surveys  We can now measure things which have been assumed in stellar modeling 
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 18.
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
Variability of Be Stars: A Key to the Structure of their Circumstellar Environments Anatoly Miroshnichenko University of Toledo Variable Star Meeting 2004.
The Milky Way Center, Shape Globular cluster system
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Lighting the dark molecular gas using the MIR H 2 rotational lines Aditya Togi Advisor: JD Smith University of Toledo 19 th June
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
December in Antarctica: The Sun never sets. The images are 1 hour apart.
(MNRAS 327, 610, 2001 & 347, 1234, 2004) David Churches, Mike Edmunds, Alistair Nelson - Physics & Astronomy, Cardiff University - Physics & Astronomy,
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
The study on Li abundances of solar-like stars Li Tanda Beijing Nomal University
Surface abundances of Am stars as a constraint on rotational mixing Olivier Richard 1,2, Suzanne Talon 2, Georges Michaud 2 1 GRAAL UMR5024, Université.
1 ALMA Science Results ALMA Detects Ethyl Cyanide on Titan ALMA detected C 2 H 5 CN in 27 rotational lines at 1.3mm – HC 3 N, CH 3 CN and CH 3 CCH simultaneously.
The Interstellar Medium
Qingkang Li Department of Astronomy Beijing Normal University The Third Workshop of SONG, April, 2010 Disks of Be Stars & Their Pulsations &
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
The Formation and Structure of Stars
Rotational Line Broadening Gray Chapter 18 Geometry and Doppler Shift Profile as a Convolution Rotational Broadening Function Observed Stellar Rotation.
Magnetism and Rotation in Herbig Ae/Be stars E. Alecian Laboratoire d’Astrophysique de l’Observatoire de Grenoble In collaboration with G.A. Wade, C. Catala,
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) In collaboration with A. Bressan (SISSA), P. Marigo (UNIPD) & L. Danese.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Flows and Cycles Large scale flows and stellar magnetic cycles Markus Roth Wiebke Herzberg René Kiefer Ariane Schad Guy Davis (UoB) Retreat of the Stellar.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
July 12, 2004Pulsating PMS stars Pulsating Pre-Main Sequence Stars in Young Open Clusters K. Zwintz Institute of Astronomy, Univ. Vienna, Austria
Spiral Galaxy - Canis Venitici We can only see about 1/6 (ca 6000ly) of the way to the Galctic Centre due to scattering by gas and dust in the disk.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Stellar NurseriesStages of Star Birth. The interstellar medium The space between the stars is not empty.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Accretion of brown dwarfs Alexander Scholz (University of Toronto) Ray Jayawardhana, Alexis Brandeker, Jaime Coffey, Marten van Kerkwijk (University of.
Matteo Cantiello Astronomical Institute Utrecht Binary star progenitors of long GRBs M. Cantiello, S.-C. Yoon, N. Langer, and M. Livio A&A 465, L29-L33.
Progenitors of long GRBs
Pre-Main-Sequence of A stars
The ISM and Stellar Birth
The Interstellar Medium
Presentation transcript:

The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna

Abundance Pattern C, N, O und S solar abundant C, N, O und S solar abundant Heavier elements underabundant, (Na) Heavier elements underabundant, (Na) Large Scatter Large Scatter Paunzen et al. (1999) Paunzen et al. (2002a) Heiter (2002)

Evolutionary Status Paunzen et al. (2002b)

Group properties About 50 members About 50 members Typical abundance pattern Typical abundance pattern Temperature range: to 6500K Temperature range: to 6500K From ZAMS to TAMS From ZAMS to TAMS No magnetic fields detected No magnetic fields detected Not found in open clusters Not found in open clusters Only spectroscopic binaries of the type „ Bootis“ Only spectroscopic binaries of the type „ Bootis“

Diffusion/Mass-loss Mass-loss „conserves“ He convection zone Mass-loss „conserves“ He convection zone BUT: Rotation induces mixing BUT: Rotation induces mixing Time scale: ca. 1 Gyr Time scale: ca. 1 Gyr Charbonneau (1993)

Diffusion/Accretion Star accretes gas component of the interstellar environment Star accretes gas component of the interstellar environment Diffusion mixes atmosphere Diffusion mixes atmosphere Number of measurements Heiter et al. (2002) Turcotte & Charbonneau (1993)

Diffusion/Accretion Source of material only from star formation Source of material only from star formation Time scale: max. 100 Myr Time scale: max. 100 Myr

Diffusion/Accretion Disk visible in IR Disk visible in IR Measurements for 26  Bootis Stars Measurements for 26  Bootis Stars Six with IR Excess, upper limits otherwise Six with IR Excess, upper limits otherwise Paunzen et al. (2003)

Theories versus Observations

A New Accretion Model What happens if a star crosses denser ISM? What happens if a star crosses denser ISM? Questions: Time scale Needed densities of ISM Relative velocity range Accretion of gas realistic Range of spectral types Statistical frequency

A New Accretion Model ISM model: „standard“ abundances, density about 10 ISM model: „standard“ abundances, density about 10 cm -3 Velocity range: 10 to 20 kms - 1 Time Scale: 1 pc, Time Scale: 1 pc, 17 kms - 1, ca yr Hot end: Stellar Winds, 12000K Hot end: Stellar Winds, 12000K Cool end: Convection, 6500K Cool end: Convection, 6500K Dust is blown away Open Clusters: no gas to accrete Statistics: about 15 objects predicted within 60 pc, 9 known Kamp & Paunzen (2002)

Theories versus Observations

Pulsating  Bootis Stars Koen et al. (2003) Paunzen et al. (2002b)

 Bootis versus  Scuti Instability strip shifted Pulsational constants smaller, Overtones excited Paunzen et al. (2002b)

Which Mechanism can be studied? Diffusion Diffusion Accretion Accretion Rotation Rotation Pulsation Pulsation depending on: Metallicity Age Stellar Environment

References Charbonneau, 1993, ApJ, 405, 720 Charbonneau, 1993, ApJ, 405, 720 Heiter, 2002, A&A, 381, 959 Heiter, 2002, A&A, 381, 959 Heiter, Weiss, Paunzen, 2002, A&A, 381, 971 Heiter, Weiss, Paunzen, 2002, A&A, 381, 971 Kamp, Paunzen, 2002, MNRAS, 335, L45 Kamp, Paunzen, 2002, MNRAS, 335, L45 Koen, Paunzen, van Wyk, et al., 2003, MNRAS, 338, 931 Koen, Paunzen, van Wyk, et al., 2003, MNRAS, 338, 931 Paunzen, Kamp, Iliev, et al., 1999, A&A, 345, 597 Paunzen, Kamp, Iliev, et al., 1999, A&A, 345, 597 Paunzen, Iliev, Kamp, Barzova, 2002a, MNRAS, 336, 1030 Paunzen, Iliev, Kamp, Barzova, 2002a, MNRAS, 336, 1030 Paunzen, Handler, Weiss, et al., 2002b, A&A, 392, 515 Paunzen, Handler, Weiss, et al., 2002b, A&A, 392, 515 Paunzen, Kamp, Weiss, Wiesemeyer, 2003, A&A, 404, 579 Paunzen, Kamp, Weiss, Wiesemeyer, 2003, A&A, 404, 579 Turcotte, Charbonneau, 1993, ApJ, 413, 376 Turcotte, Charbonneau, 1993, ApJ, 413, 376