Optimization problems, subexponential time, & Lasserre algorithms Featuring work by: Ryan O’DonnellCMU Venkat GuruswamiCMU Ali K. SinopCMU David WitmerCMU.

Slides:



Advertisements
Similar presentations
Approximability & Sums of Squares Ryan O’Donnell Carnegie Mellon.
Advertisements

Max Cut Problem Daniel Natapov.
Polynomial-time reductions We have seen several reductions:
NP-complete and NP-hard problems Transitivity of polynomial-time many-one reductions Concept of Completeness and hardness for a complexity class Definition.
Great Theoretical Ideas in Computer Science for Some.
CSC5160 Topics in Algorithms Tutorial 2 Introduction to NP-Complete Problems Feb Jerry Le
Approximation Algoirthms: Semidefinite Programming Lecture 19: Mar 22.
Computational problems, algorithms, runtime, hardness
Complexity Theory CSE 331 Section 2 James Daly. Reminders Project 4 is out Due Friday Dynamic programming project Homework 6 is out Due next week (on.
Hardness Results for Problems P: Class of “easy to solve” problems Absolute hardness results Relative hardness results –Reduction technique.
NP-complete and NP-hard problems Transitivity of polynomial-time many-one reductions Definition of complexity class NP –Nondeterministic computation –Problems.
Semidefinite Programming
1 Optimization problems such as MAXSAT, MIN NODE COVER, MAX INDEPENDENT SET, MAX CLIQUE, MIN SET COVER, TSP, KNAPSACK, BINPACKING do not have a polynomial.
Implicit Hitting Set Problems Richard M. Karp Harvard University August 29, 2011.
NP-complete and NP-hard problems
Analysis of Algorithms CS 477/677
Computability and Complexity 24-1 Computability and Complexity Andrei Bulatov Approximation.
Job Scheduling Lecture 19: March 19. Job Scheduling: Unrelated Multiple Machines There are n jobs, each job has: a processing time p(i,j) (the time to.
Integer Programming Difference from linear programming –Variables x i must take on integral values, not real values Lots of interesting problems can be.
1 NP-Complete Problems Polynomial time vs exponential time –Polynomial O(n k ), where n is the input size (e.g., number of nodes in a graph, the length.
Colored Necklace Bisection Victor Kostyuk Advisor: Michael Capalbo.
Linear Programming and Parameterized Algorithms. Linear Programming n real-valued variables, x 1, x 2, …, x n. Linear objective function. Linear (in)equality.
1 Introduction to Approximation Algorithms Lecture 15: Mar 5.
Approximation Algorithms Motivation and Definitions TSP Vertex Cover Scheduling.
1 Slides by Asaf Shapira & Michael Lewin & Boaz Klartag & Oded Schwartz. Adapted from things beyond us.
Hardness Results for Problems P: Class of “easy to solve” problems Absolute hardness results Relative hardness results –Reduction technique.
Hardness Results for Problems
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Nattee Niparnan. Easy & Hard Problem What is “difficulty” of problem? Difficult for computer scientist to derive algorithm for the problem? Difficult.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Tonga Institute of Higher Education Design and Analysis of Algorithms IT 254 Lecture 8: Complexity Theory.
Hardness of Learning Halfspaces with Noise Prasad Raghavendra Advisor Venkatesan Guruswami.
MIT and James Orlin1 NP-completeness in 2005.
Approximation Algorithms
Polynomial-time reductions We have seen several reductions:
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
EMIS 8373: Integer Programming NP-Complete Problems updated 21 April 2009.
CSCI 3160 Design and Analysis of Algorithms Chengyu Lin.
Techniques for Proving NP-Completeness Show that a special case of the problem you are interested in is NP- complete. For example: The problem of finding.
Yuan Zhou Carnegie Mellon University Joint works with Boaz Barak, Fernando G.S.L. Brandão, Aram W. Harrow, Jonathan Kelner, Ryan O'Donnell and David Steurer.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
NP-COMPLETE PROBLEMS. Admin  Two more assignments…  No office hours on tomorrow.
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
NP-Complete problems.
Minicourse on parameterized algorithms and complexity Part 4: Linear programming Dániel Marx (slides by Daniel Lokshtanov) Jagiellonian University in Kraków.
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
CPS Computational problems, algorithms, runtime, hardness (a ridiculously brief introduction to theoretical computer science) Vincent Conitzer.
Unique Games Approximation Amit Weinstein Complexity Seminar, Fall 2006 Based on: “Near Optimal Algorithms for Unique Games" by M. Charikar, K. Makarychev,
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
1 CPSC 320: Intermediate Algorithm Design and Analysis July 30, 2014.
Yuan Zhou, Ryan O’Donnell Carnegie Mellon University.
NPC.
NP-Completeness Note. Some illustrations are taken from (KT) Kleinberg and Tardos. Algorithm Design (DPV)Dasgupta, Papadimitriou, and Vazirani. Algorithms.
Boaz Barak (MSR New England) Fernando G.S.L. Brandão (Universidade Federal de Minas Gerais) Aram W. Harrow (University of Washington) Jonathan Kelner (MIT)
Complexity ©D.Moshkovits 1 2-Satisfiability NOTE: These slides were created by Muli Safra, from OPICS/sat/)
Non-LP-Based Approximation Algorithms Fabrizio Grandoni IDSIA
Instructor: Shengyu Zhang 1. Optimization Very often we need to solve an optimization problem.  Maximize the utility/payoff/gain/…  Minimize the cost/penalty/loss/…
COMPLEXITY. Satisfiability(SAT) problem Conjunctive normal form(CNF): Let S be a Boolean expression in CNF. That is, S is the product(and) of several.
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
CSE 332: NP Completeness, Part II Richard Anderson Spring 2016.
Yuan Zhou Carnegie Mellon University Joint works with Boaz Barak, Fernando G.S.L. Brandão, Aram W. Harrow, Jonathan Kelner, Ryan O'Donnell and David Steurer.
More NP-Complete and NP-hard Problems
Computational Complexity Theory
Polynomial integrality gaps for
Sum of Squares, Planted Clique, and Pseudo-Calibration
Possibilities and Limitations in Computation
Complexity Theory in Practice
Presentation transcript:

Optimization problems, subexponential time, & Lasserre algorithms Featuring work by: Ryan O’DonnellCMU Venkat GuruswamiCMU Ali K. SinopCMU David WitmerCMU John WrightCMU Yuan ZhouCMU Boaz BarakMSRNE David SteurerMSRNE

Fundamental Algorithms Problems Polynomial timeNot polynomial time A problem Õ(n) — truly efficient Another problem 2 Ω(n) — truly inefficient

Fundamental Algorithms Problems Polynomial timeNot polynomial time Õ(n) — truly efficient 2 Ω(n) 3Sat (probably) 2 n 1/3 Factoring

Balanced-Separator Input:A graph on n nodes. Output:A division into two parts of size between n/3 and 2n/3 nodes. Goal:“Cut” as few edges as possible. An extremely fundamental algorithmic task. Its complexity is almost completely unknown.

Balanced-Separator Finding the exact optimal solution is NP-hard, (probably) time 2 Ω(n). [2011]: (Probably) no poly-time algorithm which gets within % of optimum. Perfectly possible that there is an O(n log n) algorithm which gets within 1% of the optimal solution. Perfectly possible that getting a solution which is at most 100 times worse than optimal requires time 2 Ω(n).

Similarly embarrassing situation for… Coloring 3-colorable graphs Finding the maximum cut in a graph Finding the smallest ‘vertex cover’ in a graph 2Sat Many other fundamental CSP and graph probs.

UG() as a Grand Unified Theory? Input: Task:Output an assignment satisfying at least 1/2 of the equations. List of 2-vbl equations over integers: x 1 −x 2 =10, x 1 −x 5 =2, x 3 −x 15 =5, … Promise: There’s an assignment satisfying all but an fraction of the equations.

UG() as a Grand Unified Theory? The following are* at least as hard as UG(): Solving Balanced-Separator to w/i factor 100 of optimal. Finding 2Sat solutions where # of unsatisfied clauses is at most 100× optimal # of unsatisfied clauses. Coloring a 3-colorable graph using 1000 colors. Doing better than we currently know how to do on many other fundamental CSP and graph problems.

So how hard (or easy) is UG()? [Khot ’02]: Conjectured that ∀, it’s NP-hard. [ABS’10]: Solvable in time 2 n O( 1/6 ). (Basically about as easy as an NP-hard problem could possibly be.) [O Wi’12]: Improved some analysis in [ABS’10]. [O Wr’12]: Showed UG(.4) is NP-hard, and (probably) requires 2 Ω(n) time.

Q: We know that many basic problems (coloring 3-colorable graphs, 2Sat, etc.) are at least as hard as UG(). Could they also have 2 n -time algorithms? A: [GS’11,’12]: progress for Balanced-Separator. Q: How did [ABS] do it? A: There algorithm was a bit ad hoc, but [GS’11], [BRS’11] show how to do it using the “Lasserre algorithm”.

Lasserre Algorithm (2001) A generalization of a generalization of a a generalization of linear programming. A generic “black box” algorithmic technique you can try on a wide variety of problems. Comes with a crank you can turn: for each k = 1, 2, 3, … you can run a Lasserre(k) algorithm in time ≈ n k. Gives stronger results as you increase k.

What we know for many optimization problems: running time solution quality poly(n)n log(n) 2n2n Okay Opt.

What could be the case using Lasserre(k): running time solution quality poly(n)n log(n) 2n2n Okay Opt.

So how well does Lasserre(k) do? Problem 1: It’s hard to understand. Problem 2: It’s hard to analyze. Big progress by [BBHKSZ’12]: Develops new understanding of Lasserre. Shows Lasserre(8) solves all known hard instances of UG(). Perhaps Lasserre(8) actually solves UG()!

The latest (as of Thursday) Joint followup work with Yuan Zhou: Develops (dare I say?) an even better understanding of Lasserre. Shows Lasserre(4) solves known hard instances of Balanced-Separator. Gives a little evidence that Lasserre might not solve all of our optimization problems.

To Be Continued…

What is the Lasserre algorithm? Write the problem with polynomial inequalities. E.g.: Balanced-Separator Have variable x i for each vertex. Supposed to be ±1, so add the polynomial constraints x i 2 = 1 Supposed to be between n/3 and 2n/3 vertices on each side, so add the polynomial constraint −n/3 ≤ ∑ x i ≤ n/3

What is the Lasserre algorithm? Suppose I give you a multivariate polynomial, P(x 1, x 2, x 3, …, x n ) and I want to prove to you that P(x) ≥ 18 whenever Q(x 1, x 2, …, x n ) ≥ 0, where Q(x) is another multivariate polynomial. It’s NP-hard, but…

E.g.: Balanced-Separator x i 2 = 1 for each vertex i, −n/3 ≤ ∑ x i ≤ n/3 minimize = # of cut edges