National Tsing Hua University Po-Yang Hsu,Hsien-Te Chen,

Slides:



Advertisements
Similar presentations
Porosity Aware Buffered Steiner Tree Construction C. Alpert G. Gandham S. Quay IBM Corp M. Hrkic Univ Illinois Chicago J. Hu Texas A&M Univ.
Advertisements

MICRO-BUMP ASSIGNMENT FOR 3D ICS USING ORDER RELATION TA-YU KUAN, YI-CHUN CHANG, TAI-CHEN CHEN DEPARTMENT OF ELECTRICAL ENGINEERING, NATIONAL CENTRAL UNIVERSITY,
Optimal Bus Sequencing for Escape Routing in Dense PCBs H.Kong, T.Yan, M.D.F.Wong and M.M.Ozdal Department of ECE, University of Illinois at U-C ICCAD.
THERMAL-AWARE BUS-DRIVEN FLOORPLANNING PO-HSUN WU & TSUNG-YI HO Department of Computer Science and Information Engineering, National Cheng Kung University.
Caleb Serafy and Ankur Srivastava Dept. ECE, University of Maryland
A Graph-Partitioning-Based Approach for Multi-Layer Constrained Via Minimization Yih-Chih Chou and Youn-Long Lin Department of Computer Science, Tsing.
Optimization of Placement Solutions for Routability Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li DAC’13.
A Routing Technique for Structured Designs which Exploits Regularity Sabyasachi Das Intel Corporation Sunil P. Khatri Univ. of Colorado, Boulder.
Yi-Lin Chuang1, Sangmin Kim2, Youngsoo Shin2, and Yao-Wen Chang National Taiwan University, Taiwan KAIST, Korea 2010 DAC.
A T HERMAL -D RIVEN F LOORPLANNING A LGORITHM FOR 3D IC S Jason Cong, Jie Wei, and Yan Zhang ICCAD
Hsi-An Chien Ting-Chi Wang Redundant-Via-Aware ECO Routing ASPDAC2014.
Reap What You Sow: Spare Cells for Post-Silicon Metal Fix Kai-hui Chang, Igor L. Markov and Valeria Bertacco ISPD’08, Pages
3D-STAF: Scalable Temperature and Leakage Aware Floorplanning for Three-Dimensional Integrated Circuits Pingqiang Zhou, Yuchun Ma, Zhouyuan Li, Robert.
Meng-Kai Hsu, Sheng Chou, Tzu-Hen Lin, and Yao-Wen Chang Electronics Engineering, National Taiwan University Routability Driven Analytical Placement for.
Paul Falkenstern and Yuan Xie Yao-Wen Chang Yu Wang Three-Dimensional Integrated Circuits (3D IC) Floorplan and Power/Ground Network Co-synthesis ASPDAC’10.
Coupling-Aware Length-Ratio- Matching Routing for Capacitor Arrays in Analog Integrated Circuits Kuan-Hsien Ho, Hung-Chih Ou, Yao-Wen Chang and Hui-Fang.
Krit Athikulwongse, Dae Hyun Kim, Moongon Jung, and Sung Kyu Lim
Row-Based Area-Array I/O Design Planning in Concurrent Chip-Package Design Flow R. Lee and H. Chen Department of EE NCTU, Taiwan ASPDAC 2011.
Boosting: Min-Cut Placement with Improved Signal Delay Andrew B. KahngSherief Reda CSE & ECE Departments University of CA, San Diego La Jolla, CA
38 th Design Automation Conference, Las Vegas, June 19, 2001 Creating and Exploiting Flexibility in Steiner Trees Elaheh Bozorgzadeh, Ryan Kastner, Majid.
Supply Voltage Degradation Aware Analytical Placement Andrew B. Kahng, Bao Liu and Qinke Wang UCSD CSE Department {abk, bliu,
Thermal-Aware SoC Test Scheduling with Test Set Partitioning and Interleaving Zhiyuan He 1, Zebo Peng 1, Petru Eles 1 Paul Rosinger 2, Bashir M. Al-Hashimi.
Delay and Power Optimization with TSV-aware 3D Floorplanning M. A. Ahmed and M. Chrzanowska-Jeske Portland State University, Oregon, USA ISQED 2014.
Triple Patterning Aware Detailed Placement With Constrained Pattern Assignment Haitong Tian, Yuelin Du, Hongbo Zhang, Zigang Xiao, Martin D.F. Wong.
Metal Layer Planning for Silicon Interposers with Consideration of Routability and Manufacturing Cost W. Liu, T. Chien and T. Wang Department of CS, NTHU,
L i a b l eh kC o m p u t i n gL a b o r a t o r y On Effective and Efficient In-Field TSV Repair for Stacked 3D ICs Presenter: Li Jiang Li Jiang †, Fangming.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 FLUTE: Fast Lookup Table Based RSMT Algorithm.
MGR: Multi-Level Global Router Yue Xu and Chris Chu Department of Electrical and Computer Engineering Iowa State University ICCAD
A Topology-based ECO Routing Methodology for Mask Cost Minimization Po-Hsun Wu, Shang-Ya Bai, and Tsung-Yi Ho Department of Computer Science and Information.
Area-I/O Flip-Chip Routing for Chip-Package Co-Design Progress Report 方家偉、張耀文、何冠賢 The Electronic Design Automation Laboratory Graduate Institute of Electronics.
Authors: Jia-Wei Fang,Chin-Hsiung Hsu,and Yao-Wen Chang DAC 2007 speaker: sheng yi An Integer Linear Programming Based Routing Algorithm for Flip-Chip.
CRISP: Congestion Reduction by Iterated Spreading during Placement Jarrod A. Roy†‡, Natarajan Viswanathan‡, Gi-Joon Nam‡, Charles J. Alpert‡ and Igor L.
Pattern Selection based co-design of Floorplan and Power/Ground Network with Wiring Resource Optimization L. Li, Y. Ma, N. Xu, Y. Wang and X. Hong WuHan.
1 Coupling Aware Timing Optimization and Antenna Avoidance in Layer Assignment Di Wu, Jiang Hu and Rabi Mahapatra Texas A&M University.
Block-level 3D IC Design with Through-Silicon-Via Planning Dae Hyun Kim, Rasit Onur Topaloglu, and Sung Kyu Lim Department of Electrical and Computer Engineering,
Etron Project: Placement and Routing for Chip-Package-Board Co-Design
TSV-Aware Analytical Placement for 3D IC Designs Meng-Kai Hsu, Yao-Wen Chang, and Valerity Balabanov GIEE and EE department of NTU DAC 2011.
Abhishek Pandey Reconfigurable Computing ECE 506.
1 Global Routing Method for 2-Layer Ball Grid Array Packages Yukiko Kubo*, Atsushi Takahashi** * The University of Kitakyushu ** Tokyo Institute of Technology.
Wen-Hao Liu 1, Yih-Lang Li 1, and Kai-Yuan Chao 2 1 Department of Computer Science, National Chiao-Tung University, Hsin-Chu, Taiwan 2 Intel Architecture.
Low-Power Gated Bus Synthesis for 3D IC via Rectilinear Shortest-Path Steiner Graph Chung-Kuan Cheng, Peng Du, Andrew B. Kahng, and Shih-Hung Weng UC San.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation High-Performance.
An Efficient Clustering Algorithm For Low Power Clock Tree Synthesis Rupesh S. Shelar Enterprise Microprocessor Group Intel Corporation, Hillsboro, OR.
Thermal-aware Steiner Routing for 3D Stacked ICs M. Pathak and S.K. Lim Georgia Institute of Technology ICCAD 07.
IO CONNECTION ASSIGNMENT AND RDL ROUTING FOR FLIP-CHIP DESIGNS Jin-Tai Yan, Zhi-Wei Chen 1 ASPDAC.2009.
ARCHER:A HISTORY-DRIVEN GLOBAL ROUTING ALGORITHM Muhammet Mustafa Ozdal, Martin D. F. Wong ICCAD ’ 07.
Tao Lin Chris Chu TPL-Aware Displacement- driven Detailed Placement Refinement with Coloring Constraints ISPD ‘15.
Huang-Yu Chen †, Mei-Fang Chiang †, Yao-Wen Chang † Lumdo Chen ‡, and Brian Han ‡ Novel Full-Chip Gridless Routing Considering Double-Via Insertion † The.
Register Placement for High- Performance Circuits M. Chiang, T. Okamoto and T. Yoshimura Waseda University, Japan DATE 2009.
1 Efficient Obstacle-Avoiding Rectilinear Steiner Tree Construction Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, Chia-Lin Yang National Taiwan.
Test Architecture Design and Optimization for Three- Dimensional SoCs Li Jiang, Lin Huang and Qiang Xu CUhk Reliable Computing Laboratry Department of.
Po-Wei Lee, Chung-Wei Lin, Yao-Wen Chang, Chin-Fang Shen, Wei-Chih Tseng NTU &Synopsys An Efficient Pre-assignment Routing Algorithm for Flip-Chip Designs.
TSV-Constrained Micro- Channel Infrastructure Design for Cooling Stacked 3D-ICs Bing Shi and Ankur Srivastava, University of Maryland, College Park, MD,
Escape Routing of Mixed-Pattern Signals Based on Staggered-Pin- Array PCBs K. Wang, H. Wang and S. Dong Department of Computer Science & Technology, Tsinghua.
Non-stitch Triple Patterning- Aware Routing Based on Conflict Graph Pre-coloring Po-Ya Hsu Yao-Wen Chang.
Simultaneous Analog Placement and Routing with Current Flow and Current Density Considerations H.C. Ou, H.C.C. Chien and Y.W. Chang Electronics Engineering,
ILP-Based Inter-Die Routing for 3D ICs Chia-Jen Chang, Pao-Jen Huang, Tai-Chen Chen, and Chien-Nan Jimmy Liu Department of Electrical Engineering, National.
Maze Routing Algorithms with Exact Matching Constraints for Analog and Mixed Signal Designs M. M. Ozdal and R. F. Hentschke Intel Corporation ICCAD 2012.
BOB-Router: A New Buffering-Aware Global Router with Over-the-Block Routing Resources Yilin Zhang1, Salim Chowdhury2 and David Z. Pan1 1 Department of.
System in Package and Chip-Package-Board Co-Design
High-Performance Global Routing with Fast Overflow Reduction Huang-Yu Chen, Chin-Hsiung Hsu, and Yao-Wen Chang National Taiwan University Taiwan.
A Novel Timing-Driven Global Routing Algorithm Considering Coupling Effects for High Performance Circuit Design Jingyu Xu, Xianlong Hong, Tong Jing, Yici.
Interconnect Characteristics of 2.5-D System Integration Scheme Yangdong (Steven) Deng & Wojciech P. Maly
Dept. of Electronics Engineering & Institute of Electronics National Chiao Tung University Hsinchu, Taiwan ISPD’16 Generating Routing-Driven Power Distribution.
Proximity Optimization for Adaptive Circuit Design Ang Lu, Hao He, and Jiang Hu.
The Interconnect Delay Bottleneck.
Jinghong Liang,Tong Jing, Xianlong Hong Jinjun Xiong, Lei He
An Automated Design Flow for 3D Microarchitecture Evaluation
Clock Tree Routing With Obstacles
Communication Driven Remapping of Processing Element (PE) in Fault-tolerant NoC-based MPSoCs Chia-Ling Chen, Yen-Hao Chen and TingTing Hwang Department.
Presentation transcript:

Stacking Signal TSV for Thermal Dissipation in Global Routing for 3D IC National Tsing Hua University Po-Yang Hsu,Hsien-Te Chen, TingTing Hwang ASPDAC’13

Outline Introduction Motivation Signal TSV Assignment and Relocation for Thermal Dissipation Experimental Result Conclusion

Introduction Three dimensional (3D) chip stacking by Through-Silicon-Via (TSV) has been identified as an effective way to achieve better performance in speed and power [2, 3]. However, such solution inevitably encounters challenges in thermal dissipation since stacked dies generate significant amount of heat per unit volume.

Introduction Temperature aware 3D global routing algorithm by inserting ”thermal vias” and ”thermal wires” to lower the thermal resistance[4] Reduces the temperature at the cost of extra area of ”thermal vias”[1,6-10] Performance and thermalaware Steiner routing algorithm to place signal TSVs to reduce temperature.[11] Does not fully utilize the outstanding thermal conductance of TSV in thermal dissipation. [12] proposed a stacked-TSV power network structure to improve thermal dissipation by fully utilizing TSVs in power network. only employs stacked-TSV structure in power network.

Motivation - Thermal model The lateral thermal resistors Rlateral are determined by heat conductance of device material

Motivation 20um

Motivation Relationship between temperature and distance of stacked signal TSV to heat source

Signal TSV Assignment and Relocation for Thermal Dissipation Overall flow of placing signal TSVs in global routing

Initial TSV Assignment

Initial TSV Assignment

Initial TSV Assignment PowDensityi,j,k : power density in grid (i,j,k) where i, j, k denotes coordinates of the grid node in x, y, z axis direction high lumped power density grid needs more signal TSVs to dissipate its heat. n : number of tiers in the design. TSVNumi,j,k : number of signal TSVs in grid (i,j,k).

Initial TSV Assignment SDi,j is defined as the stacking degree in grid (i,j), which is computed as the number of TSV stacking at grid position (i,j). Larger Gain value means higher power density, less TSVs, and more stacking signal TSVs.

Stacked-TSV Relocation Stage

Hotspot grids Identification Hotspot grid is identified by the top 10% highest thermal criticality grids. define a circle region to find its saver net.

Hotspot grids Identification Use a matching algorithm to find the overall best solution. GridDist is the summation of distance from hotspot grid to the nearest TSV of the saver net n in all tiers. wiring overhead if we stack the TSVs of saver net n close to the grid g. H S Weighted graph G = ( H∪S, E)

Hotspot grids Identification Use a matching algorithm to find the overall best solution. StackingDegree is the number of tiers that a saver net crosses. heat dissipation ability H S Weighted graph G = ( H∪S, E)

Determination of Stacking Grid Based on the matching solution, TSV of a saver net will be relocated near the hotspot grid. However, there are other factors to determine if a grid location is the best choice. Define candidate target grids which are hotspot grids and the adjacent grids nearby them to determine the best target grid location for moving signal TSV.

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Distance between candidate target grid and hotspot grid Power density Number of TSVs Whitespace Wirelength

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Distance between candidate target grid and hotspot grid The larger DSST the closer the distance between stacking location to the hotspot grid.

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Power density High power density grid needs more stacked signal TSV to dissipate its heat.

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Number of TSVs When TSVi,j,k is larger, fewer number of TSVs is in grid (i,j,k).

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Whitespace

Determination of Stacking Grid Gain function to select our target grid to place stacked signal TSV at grid (i, j) is defined as Consider Wirelength Wirelengthi,j,k is the wirelength overhead in tier k if stacking location is at grid (i,j). smaller value of WL denotes higher wiring overhead. Move signal TSVs to the same 2D location across all tiers will change the routing topology and increase wiring overhead.

Experimental Result 2005 IWLS benchmarks [20] and industrial circuits. 3D placement results are produced by a partitioning driven placement for 3D ICs [5]. minimize the total wirelength and signal-TSV count

Experimental Result Extra hardware overhead !!! S.TSV : Total # of Stacked TSV

Conclusion A new integrated architecture, stacked signal TSV, was developed to dissipate heat. Based on this structure, a two-stage TSV locating algorithm has been proposed to construct the stacked signal TSVs and fully utilize the TSV thermal conductance to optimize the chip temperature. Compared to previous thermal-TSV insertion method, our proposed algorithm has zero hardware overhead incurred by thermal-TSV.