Note 3 of 5E Statistics with Economics and Business Applications Chapter 2 Describing Sets of Data Descriptive Statistics - Tables and Graphs.

Slides:



Advertisements
Similar presentations
Statistics for the Social Sciences Psychology 340 Fall 2006 Distributions.
Advertisements

Introduction to the Practice of Statistics
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
CHAPTER 1 Exploring Data
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
1.1 Displaying and Describing Categorical & Quantitative Data.
Chapter 1 & 3.
Copyright ©2003 Brooks/Cole A division of Thomson Learning, Inc. Definitions variableA variable is a characteristic that changes or varies over time and/or.
Introduction to Statistics
Introduction to Statistical Method
Introduction to Probability and Statistics Thirteenth Edition Chapter 1 Describing Data with Graphs.
1 Pertemuan 02 Penyajian Data dan Distribusi Frekuensi Matakuliah: I0134 – Metode Statistika Tahun: 2007.
CHAPTER 1: Picturing Distributions with Graphs
Objectives (BPS chapter 1)
Chapter 1 Descriptive Analysis. Statistics – Making sense out of data. Gives verifiable evidence to support the answer to a question. 4 Major Parts 1.Collecting.
1 Pertemuan 01 Pendahuluan Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
AN OVERVIEW OF STATISTICS. WHAT IS STATISTICS? What does a statistician do? Player Games Minutes Points Rebounds FG% Bob Andy
Statistics 3502/6304 Prof. Eric A. Suess Chapter 3.
Introduction to Probability and Statistics
STATISTIC FOR COMPUTING (CSNB293) MODULE 1 GRAPHICAL DATA REPRESENTATION.
Copyright ©2011 Nelson Education Limited Describing Data with Graphs CHAPTER 1.
Chapter 1 The Role of Statistics. Three Reasons to Study Statistics 1.Being an informed “Information Consumer” Extract information from charts and graphs.
1 MATB344 Applied Statistics Chapter 1 Describing Data with Graphs.
1 MATB344 Applied Statistics Chapter 1 Describing Data with Graphs.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Essential Statistics Chapter 11 Picturing Distributions with Graphs.
Displaying Distributions with Graphs. the science of collecting, analyzing, and drawing conclusions from data.
CHAPTER 1 Picturing Distributions with Graphs BPS - 5TH ED. CHAPTER 1 1.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 1 Exploring Data 1.2 Displaying Quantitative.
1 Pertemuan 01 Data dan Statistika Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Copyright 2011 by W. H. Freeman and Company. All rights reserved.1 Introductory Statistics: A Problem-Solving Approach by Stephen Kokoska Chapter 2 Tables.
Chapter 0: Why Study Statistics? Chapter 1: An Introduction to Statistics and Statistical Inference 1
Statistics - is the science of collecting, organizing, and interpreting numerical facts we call data. Individuals – objects described by a set of data.
1.4 Graphs for Quantitative Data Chapter 1 (Page 17)
Elementary Statistics (Math 145) June 19, Statistics is the science of collecting, analyzing, interpreting, and presenting data. is the science.
Chapter 1 Describing Data with Graphs. Variables and Data variable A variable is a characteristic that changes over time and/or for different individuals.
What is Statistics?. Statistics 4 Working with data 4 Collecting, analyzing, drawing conclusions.
Unit 1 - Graphs and Distributions. Statistics 4 the science of collecting, analyzing, and drawing conclusions from data.
1.2 Displaying Quantitative Data with Graphs.  Each data value is shown as a dot above its location on the number line 1.Draw a horizontal axis (a number.
Descriptive Statistics
CHAPTER 1 Exploring Data
Prof. Eric A. Suess Chapter 3
Displaying and Describing Distributions
Variables and Data A variable is a characteristic that changes or varies over time and/or for different individuals or objects under consideration. Examples:
Basic Definitions Statistics: statistics is the science of data. This involves collecting, classifying, summarizing, organizing, analyzing, and interpreting.
Chapter 2: Methods for Describing Data Sets
Warm Up.
CHAPTER 1: Picturing Distributions with Graphs
Sec. 1.1 HW Review Pg. 19 Titanic Data Exploration (Excel File)
recap Individuals Variables (two types) Distribution
Introduction to Statistical Method
CHAPTER 1: Picturing Distributions with Graphs
Chapter 1: Describing Data with Graphs
Language Describing Data by Tables and Graphics Chapter 1 (and 0)
Organizing and Summarizing Data
CHAPTER 1 Exploring Data
CHAPTER 1 Exploring Data
Elementary Statistics (Math 145)
CHAPTER 1 Exploring Data
CHAPTER 1 Exploring Data
What is Statistics? Day 2..
Introduction to Probability and Statistics Thirteenth Edition
Basic Practice of Statistics - 3rd Edition
Basic Practice of Statistics - 3rd Edition
Principles of Statistics
CHAPTER 1: Picturing Distributions with Graphs
CHAPTER 1 Exploring Data
Experimental Design Experiments Observational Studies
Organizing, Displaying and Interpreting Data
Presentation transcript:

Note 3 of 5E Statistics with Economics and Business Applications Chapter 2 Describing Sets of Data Descriptive Statistics - Tables and Graphs

Note 3 of 5E Review Review I. What’s in last lecture? 1. inference process 2. population and samples II. What's in this lecture? Descriptive Statistics – tables and graphs. Read Chapter 2.

Note 3 of 5E Descriptive and Inferential Statistics Statistics can be broken into two basic types: Descriptive Statistics (Chapter 2): Methods for organizing, displaying and describing data by using tables, graphs and summary statistics. Descriptive statistics describe patterns and general trends in a data set. It allows us to get a ``feel'' for the data and access the quality of the data. Inferential Statistics (Chapters 7-13): Methods that making decisions or predictions about a population based on sampled data.

Note 3 of 5E Variables and Data variableA variable is a characteristic that changes or varies over time and/or for different individuals or objects under consideration. Examples:Examples: Hair color, white blood cell count, time to failure of a computer component.

Note 3 of 5E Definitions experimental unitAn experimental unit is the individual or object on which a variable is measured. measurementA measurement results when a variable is actually measured on an experimental unit. data, sample population.A set of measurements, called data, can be either a sample or a population.

Note 3 of 5E Example Variable – Hair color Experimental unit –Person Typical Measurements –Brown, black, blonde, etc.

Note 3 of 5EExample Variable – Time until a light bulb burns out Experimental unit –Light bulb Typical Measurements –1500 hours, hours, etc.

Note 3 of 5E How many variables have you measured? Univariate data:Univariate data: One variable is measured on a single experimental unit. Bivariate data:Bivariate data: Two variables are measured on a single experimental unit. Multivariate data:Multivariate data: More than two variables are measured on a single experimental unit.

Note 3 of 5E Types of Variables Qualitative Quantitative Discrete Continuous

Note 3 of 5E Types of Variables Qualitative variables Qualitative variables measure a quality or characteristic on each experimental unit. Examples: Examples: Hair color (black, brown, blonde…) Make of car (Dodge, Honda, Ford…) Gender (male, female) State of birth (California, Arizona,….)

Note 3 of 5E Types of Variables Quantitative variables Quantitative variables measure a numerical quantity on each experimental unit. Discrete Discrete if it can assume only a finite or countable number of values. Continuous Continuous if it can assume the infinitely many values corresponding to the points on a line interval.

Note 3 of 5E Examples For each orange tree in a grove, the number of oranges is measured. –Quantitative discrete For a particular day, the number of cars entering a college campus is measured. –Quantitative discrete Time until a light bulb burns out –Quantitative continuous

Note 3 of 5E Graphing Qualitative Variables data distributionUse a data distribution to describe: –What values –What values of the variable have been measured –How often –How often each value has occurred “How often” can be measured 3 ways: –Frequency –Relative frequency = Frequency/n –Percent = 100 x Relative frequency

Note 3 of 5E Example A bag of M&M ® s contains 25 candies: Raw Data:Raw Data: Statistical Table:Statistical Table: ColorTallyFrequencyRelative Frequency Percent Red55/25 =.2020% Blue33/25 =.1212% Green22/25 =.088% Orange33/25 =.1212% Brown88/25 =.3232% Yellow44/25 =.1616% m m m mm m m m m m m m m m m m m m m m m m m m m m m m m m m mmmm mm m mm mmmmmmm mmm

Note 3 of 5E Graphs Bar Chart Pie Chart

Note 3 of 5EScatterplots The simplest graph for quantitative data Plots the measurements as points on a horizontal axis, stacking the points that duplicate existing points. Example:Example: The set 4, 5, 5, 7,

Note 3 of 5E Stem and Leaf Plots A simple graph for quantitative data Uses the actual numerical values of each data point. –Divide each measurement into two parts: the stem and the leaf. –List the stems in a column, with a vertical line to their right. –For each measurement, record the leaf portion in the same row as its matching stem. –Order the leaves from lowest to highest in each stem. –Divide each measurement into two parts: the stem and the leaf. –List the stems in a column, with a vertical line to their right. –For each measurement, record the leaf portion in the same row as its matching stem. –Order the leaves from lowest to highest in each stem.

Note 3 of 5E Example The prices ($) of 18 brands of walking shoes: Reorder

Note 3 of 5E Interpreting Graphs: Location and Spread Where is the data centered on the horizontal axis, and how does it spread out from the center?

Note 3 of 5E Interpreting Graphs: Shapes Mound shaped and symmetric (mirror images) Skewed right: a few unusually large measurements Skewed left: a few unusually small measurements Bimodal: two local peaks

Note 3 of 5E Interpreting Graphs: Outliers Are there any strange or unusual measurements that stand out in the data set? Outlier No Outliers

Note 3 of 5E Example A quality control process measures the diameter of a gear being made by a machine (cm). The technician records 15 diameters, but inadvertently makes a typing mistake on the second entry

Note 3 of 5E Relative Frequency Histograms relative frequency histogram A relative frequency histogram for a quantitative data set is a bar graph in which the height of the bar shows “how often” (measured as a proportion or relative frequency) measurements fall in a particular class or subinterval. Create intervals Stack and draw bars

Note 3 of 5E How to Draw Relative Frequency Histograms 5-12subintervalsDivide the range of the data into 5-12 subintervals of equal length. approximate widthCalculate the approximate width of the subinterval as Range/number of subintervals. Round the approximate width up to a convenient value. left inclusionUse the method of left inclusion, including the left endpoint, but not the right in your tally. (Different from the guideline in the book). statistical tableCreate a statistical table including the subintervals, their frequencies and relative frequencies.

Note 3 of 5E How to Draw Relative Frequency Histograms relative frequency histogramDraw the relative frequency histogram, plotting the subintervals on the horizontal axis and the relative frequencies on the vertical axis. The height of the bar represents proportion –The proportion of measurements falling in that class or subinterval. probability –The probability that a single measurement, drawn at random from the set, will belong to that class or subinterval.

Note 3 of 5EExample The ages of 50 tenured faculty at a state university We choose to use 6 intervals. =(70 – 26)/6 = 7.33Minimum class width = (70 – 26)/6 = 7.33 = 8Convenient class width = Use 6 classes of length 8, starting at 25.

Note 3 of 5E AgeTallyFrequencyRelative Frequency Percent 25 to < /50 =.1010% 33 to < /50 =.2828% 41 to < /50 =.2626% 49 to < /50 =.1818% 57 to < /50 =.1414% 65 to < /50 =.044%

Note 3 of 5E Shape? Outliers? What proportion of the tenured faculty are younger than 41? What is the probability that a randomly selected faculty member is 49 or older? Skewed right No. (14 + 5)/50 = 19/50 =.38 ( )/50 = 18/50 =.36 Describing the Distribution

Note 3 of 5E Key Concepts I. How Data Are Generated 1. Experimental units, variables, measurements 2. Samples and populations 3. Univariate, bivariate, and multivariate data II. Types of Variables 1. Qualitative or categorical 2. Quantitative a. Discrete b. Continuous III. Graphs for Univariate Data Distributions 1. Qualitative or categorical data a. Pie charts b. Bar charts

Note 3 of 5E Key Concepts 2. Quantitative data a. Scatterplot b. Stem and leaf plots c. Relative frequency histograms 3. Describing data distributions a. Shapes—symmetric, skewed left, skewed right, unimodal, bimodal b. Proportion of measurements in certain intervals c. Outliers