PDF’s: Current status and issues PDF’s with uncertainties (Tuesday, 15:00 -17:00, TH-Auditorium) PDF’s with uncertainties (Tuesday, 15:00 -17:00, TH-Auditorium)

Slides:



Advertisements
Similar presentations
Low-x and PDF studies at LHC Sept 2008 A M Cooper-Sarkar, Oxford At the LHC high precision (SM and BSM) cross section predictions require precision Parton.
Advertisements

Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
1 17 th May 2007 C.P. Ward Sensitivity of ZZ->llnunu to Anomalous Couplings Pat Ward University of Cambridge.
A Bayesian Analysis of Parton Distribution Uncertainties Clare Quarman Atlas UK Physics meeting – UCL 15 th Dec 2003.
Simplified Models for Dark Matter and Missing Energy Searches at the LHC GIORGIO BUSONI 1 BASED ON: ARXIV: (AND , , ,
ISDM 2005, Kromeriz Kamil Sedlak, Jets in photoproduction at HERA 1 Jets in Photoproduction & at low Q 2 at HERA On behalf of the H1 and ZEUS Collaborations.
1 META PDFs as a framework for PDF4LHC combinations Jun Gao, Joey Huston, Pavel Nadolsky (presenter) arXiv: , Parton.
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
May 2005CTEQ Summer School25 4/ Examples of PDF Uncertainty.
Top properties workshop 11/11/05 Some theoretical issues regarding Method 2 J. Huston Michigan State University.
25 th of October 2007Meeting on Diffraction and Forward Physics at HERA and the LHC, Antwerpen 1 Factorization breaking in diffraction at HERA? Alice Valkárová.
Preliminary results in collaboration with Pavel Nadolsky Les Houches /6/5.
1 Combination of PDF uncertainties for LHC observables Pavel Nadolsky (SMU) in collaboration with Jun Gao (Argonne), Joey Huston (MSU) Based on discussions.
Monte Carlo event generators for LHC physics
Top & EW Report Doreen Wackeroth SUNY Buffalo TeV4LHC 10/22/2005.
1 Institute of Engineering Mechanics Leopold-Franzens University Innsbruck, Austria, EU H.J. Pradlwarter and G.I. Schuëller Confidence.
NNPDF Partons: Issues NNPDF2.1 Users Guide Reweighting RDB, Valerio Bertone, Francesco Cerutti, Luigi Del Debbio, Stefano Forte, Alberto Guffanti, Jose.
Luca Stanco - PadovaQCD at HERA, LISHEP pQCD  JETS Luca Stanco – INFN Padova LISHEP 2006 Workshop Rio de Janeiro, April 3-7, 2006 on behalf of.
The LHAPDF interface – current status and future The Les Houches Accord PDF interface has been developed byWalter Giele at FNAL as a direct result of the.
Global QCD Analysis of Nucleon Structure: Progress and Prospects–CTEQ Background: –Advances in experiment and theory in global QCD analysis in recent years.
VI. Evaluate Model Fit Basic questions that modelers must address are: How well does the model fit the data? Do changes to a model, such as reparameterization,
Cambridge Workshop July 18, 2002 Rick Field - Florida/CDFPage 1 The Sources of b-Quarks at the Tevatron  Important to have good leading (or leading-log)
Monday, Jan. 27, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #4 Monday, Jan. 27, 2003 Dr. Jae Yu 1.Neutrino-Nucleon DIS 2.Formalism of -N DIS.
SPECTRUM CERN – ATLAS Research Semester: Fall ‘14 Joe Gibson, Computer Engineering Grand Valley State University.
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Run 2 at CDF  Study the “underlying event” as defined by.
The SAMPER project (Semi-numerical AMPlitude EvaluatoR) W. Giele, TeV4LHC, 20/10/05 Giulia Zanderighi, Keith Ellis and Walter Giele. hep-ph/ hep-ph/
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
7 th April 2003PHOTON 2003, Frascati1 Photon structure as revealed in ep collisions Alice Valkárová Institute of Particle and Nuclear Physics Charles University.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
Status of Recent Parton Distribution Analyses Hung-Liang Lai Department of Science Education Taipei Municipal Teachers College Introduction Time evolution.
Top mass error predictions with variable JES for projected luminosities Joshua Qualls Centre College Mentor: Michael Wang.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
High Q 2 Structure Functions and Parton Distributions Ringberg Workshop 2003 : New Trends in HERA physics Benjamin Portheault LAL Orsay On behalf of the.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
SWADHIN TANEJA (STONY BROOK UNIVERSITY) K. BOYLE, A. DESHPANDE, C. GAL, DSSV COLLABORATION 2/4/2016 S. Taneja- DIS 2011 Workshop 1 Uncertainty determination.
Global QCD Analysis and Hadron Collider Physics What is the role of QCD and global QCD analysis in Hadron Collider Physics? Review of global QCD analysis:
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
ZEUS Physics Overview A sampling of recent physics results –Charged current cross-section –Charm production in DIS –Exotic hadrons (glueballs and pentaquarks)
Some recent QCD results at the Tevatron N. B. Skachkov (JINR, Dubna)
Jet Studies at CDF Anwar Ahmad Bhatti The Rockefeller University CDF Collaboration DIS03 St. Petersburg Russia April 24,2003 Inclusive Jet Cross Section.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
H1 QCD analysis of inclusive cross section data DIS 2004, Štrbské Pleso, Slovakia, April 2004 Benjamin Portheault LAL Orsay On behalf of the H1 Collaboration.
CT14 PDF update J. Huston* PDF4LHC meeting April 13, 2015 *for CTEQ-TEA group: S. Dulat, J. Gao, M. Guzzi, T.-J. Hou, J. Pumplin, C. Schmidt, D. Stump,
H1 and ZEUS Combined PDF Fit DIS08 A M Cooper Sarkar on behalf of ZEUS and H1 HERA Structure Function Working Group NLO DGLAP PDF fit to the combined HERA.
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Drell-Yan Spectrum and PDFs Dimitri Bourilkov University of Florida Di-lepton Meeting, LPC, FNAL, October 2, 2008.
F Don Lincoln f La Thuile 2002 Don Lincoln Fermilab Tevatron Run I QCD Results Don Lincoln f.
IFIC. 1/15 Why are we interested in the top quark? ● Heaviest known quark (plays an important role in EWSB in many models) ● Important for quantum effects.
Modern Approach to Monte Carlo’s (L1) The role of resolution in Monte Carlo’s (L1) Leading order Monte Carlo’s (L1) Next-to-Leading order Monte Carlo’s.
Tools08 1 st July1 PDF issues for Monte Carlo generators Peter Richardson IPPP, Durham University.
QCD Summary Report S. Ellis U. of Washington “Gee, I sure hope Joey wrote me a good talk.”
Moriond 2001Jets at the TeVatron1 QCD: Approaching True Precision or, Latest Jet Results from the TeVatron Experimental Details SubJets and Event Quantities.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
1 A M Cooper-Sarkar University of Oxford ICHEP 2014, Valencia.
Developments in PDF4LHC Developments in PDF4LHC Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA BUE, Cairo,
First Evidence for Electroweak Single Top Quark Production
Michigan State University
Current status and future prospects
Global QCD Analysis and Collider Phenomenology — CTEQ
QCD Radiative Corrections for the LHC
DIS 2004 XII International Workshop
Kinematic Map in x,Q for CTEQ4
A. DJOUADI (Paris, Montpellier)
Heavy Flavour Content of the Proton
PYTHIA 6.2 “Tunes” for Run II
Measurement of b-jet Shapes at CDF
b-Quark Production at the Tevatron
Presentation transcript:

PDF’s: Current status and issues PDF’s with uncertainties (Tuesday, 15:00 -17:00, TH-Auditorium) PDF’s with uncertainties (Tuesday, 15:00 -17:00, TH-Auditorium) Where are we standing? Where are we standing? What still needs to be done? What still needs to be done? PDF’s and the LHC (Wednesday, 14:30-17:00, TH-Auditorium) PDF’s and the LHC (Wednesday, 14:30-17:00, TH-Auditorium) Predictions for the LHC Predictions for the LHC LHC measurements impact on PDF’s LHC measurements impact on PDF’s PDF library interface (Thursday, 10:00-12:00, TH-Auditorium) PDF library interface (Thursday, 10:00-12:00, TH-Auditorium) LHAPDF evolution towards a standard tool LHAPDF evolution towards a standard tool PDFLIB compatibility PDFLIB compatibility Heavy flavor PDF’s at the LHC (Friday, 10:00-12:00, TH-Auditorium) Heavy flavor PDF’s at the LHC (Friday, 10:00-12:00, TH-Auditorium) Can we neglect mass effects of initial state quarks? Can we neglect mass effects of initial state quarks? To what accuracy do we need to know them? To what accuracy do we need to know them? W. Giele, CERN, 07/21/02

PDF’s with uncertainties Tuesday, 15:00-17:00, TH-Auditorium Tuesday, 15:00-17:00, TH-Auditorium “The Gaussian approach to PDF’s with uncertainties”, Sergey Alekhin “The Gaussian approach to PDF’s with uncertainties”, Sergey Alekhin “The Monte Carlo approach to PDF’s with uncertainties”, Walter Giele “The Monte Carlo approach to PDF’s with uncertainties”, Walter Giele “The Neural Network approach to PDF’s with uncertainties”, Stefano Forte “The Neural Network approach to PDF’s with uncertainties”, Stefano Forte The field of PDF determination has undergone a dramatic change with the introduction of PDF uncertainties. The field of PDF determination has undergone a dramatic change with the introduction of PDF uncertainties. This development is driven by the ever increasing accuracy of the experiments. This development is driven by the ever increasing accuracy of the experiments. The two major “global fit” groups (CTEQ and MRST) now have released fits which include uncertainties The two major “global fit” groups (CTEQ and MRST) now have released fits which include uncertainties Other, independent fits which include uncertainties exist. Other, independent fits which include uncertainties exist. While this session is more theoretical in nature, it is important for phenomenology While this session is more theoretical in nature, it is important for phenomenology What does the uncertainty cover? What does the uncertainty cover? What are the hidden assumptions in the PDF determination? What are the hidden assumptions in the PDF determination? The crucial question is: How “believable” are the uncertainties? The crucial question is: How “believable” are the uncertainties? Does a five sigma deviation from (N)NLO theory for e.g. the di-jet mass spectrum denote new physics? Does a five sigma deviation from (N)NLO theory for e.g. the di-jet mass spectrum denote new physics? Or does this mean a “retuning” of the PDF’s? Or does this mean a “retuning” of the PDF’s?

PDF’s with uncertainties The old style “best global fit” PDF: The old style “best global fit” PDF: An error weighted average of the experimental results An error weighted average of the experimental results The details of the experimental uncertainties only of secondary importance The details of the experimental uncertainties only of secondary importance The only requirement was that it gave a reasonable description of the global ensemble of experiments. The only requirement was that it gave a reasonable description of the global ensemble of experiments. How to proceed to PDF’s with uncertainties? How to proceed to PDF’s with uncertainties? Consider all PDF sets Consider all PDF sets For each of these PDF sets calculate the likelyhood it describes the experimental data For each of these PDF sets calculate the likelyhood it describes the experimental data Now each PDF set has a probability associated with it. We have a probability density in “PDF space”! Now each PDF set has a probability associated with it. We have a probability density in “PDF space”! We can now make predictions as each possible PDF set has an associated uncertainty, building up a probability density for the observable We can now make predictions as each possible PDF set has an associated uncertainty, building up a probability density for the observable This would be a straightforward if: This would be a straightforward if: We know the functional description of PDF’s, i.e. PDF sets are described by a set of parameters. We know the functional description of PDF’s, i.e. PDF sets are described by a set of parameters. However, we do not know this. In fact a PDF set has infinite number of degrees of freedom. However, we do not know this. In fact a PDF set has infinite number of degrees of freedom. This means “all PDF sets” needs to be further specified. We need to specify a prior density in “PDF space” which is solely driven by theory assumptions on preferred functional behavior of PDF’s This means “all PDF sets” needs to be further specified. We need to specify a prior density in “PDF space” which is solely driven by theory assumptions on preferred functional behavior of PDF’s

PDF predictions for the LHC Wednesday, 14:30-17:00, TH-Auditorium Wednesday, 14:30-17:00, TH-Auditorium “ PDF uncertainties in Higgs production at hadron colliders”, Samir Ferrag “ PDF uncertainties in Higgs production at hadron colliders”, Samir Ferrag “ Impact of the PDF uncertainties on the sensitivity to Extra-dimension at the LHC”, Samir Ferrag “ Impact of the PDF uncertainties on the sensitivity to Extra-dimension at the LHC”, Samir Ferrag “ Quantitative impact of LHC measurements on PDF determination”, Sergey Alekhin “ Quantitative impact of LHC measurements on PDF determination”, Sergey Alekhin Given the PDF sets with uncertainties we can look at many LHC cross sections: Given the PDF sets with uncertainties we can look at many LHC cross sections: The existence of PDF uncertainties give more texture to the phenomenology The existence of PDF uncertainties give more texture to the phenomenology We can see to what extend PDF uncertainties will limit physics goals We can see to what extend PDF uncertainties will limit physics goals PDF induced correlations between different observables PDF induced correlations between different observables Given the correlations, how to use a measurement in the PDF fit in order to reduce the PDF uncertainty in another observable Given the correlations, how to use a measurement in the PDF fit in order to reduce the PDF uncertainty in another observable Do we need a flexible fitting tool? Do we need a flexible fitting tool? E.g. Assume I find that the W-mass PDF uncertainty can be further reduced by including the W and Z rapidity distribution in the PDF fit E.g. Assume I find that the W-mass PDF uncertainty can be further reduced by including the W and Z rapidity distribution in the PDF fit Should I wait until this is done by MRST in their next release? Should I wait until this is done by MRST in their next release? Or should we develop tools to perform such enhancements to existing fits? Or should we develop tools to perform such enhancements to existing fits?

Impact of LHC measurements on PDF’s We can even go further by using the LHC measurements in PDF fits We can even go further by using the LHC measurements in PDF fits A hadron collider has access to all PDF’s at large momentum transfer scales A hadron collider has access to all PDF’s at large momentum transfer scales One can do this solely based on the LHC or include other experiments One can do this solely based on the LHC or include other experiments The principle of such a procedure is simple: The principle of such a procedure is simple: Jet cross sections couple to the parton color and will separate gluons (G) from the quarks (Q) Jet cross sections couple to the parton color and will separate gluons (G) from the quarks (Q) Vector boson cross sections couple to the quark EW quantum numbers. So, it will separate the quark (Q) into up-type quarks (U) and down type quarks (D) Vector boson cross sections couple to the quark EW quantum numbers. So, it will separate the quark (Q) into up-type quarks (U) and down type quarks (D) To further separate U and D we can use heavy flavor tagging: To further separate U and D we can use heavy flavor tagging: Z/photon+charm gives charm PDF: D → (d,c) Z/photon+charm gives charm PDF: D → (d,c) W+charm gives strange PDF, Z/photon+bottom gives bottom PDF: U → (u,s,b) W+charm gives strange PDF, Z/photon+bottom gives bottom PDF: U → (u,s,b) Note that in PDF’s using LHC data, the PDF uncertainties become correlated with the experimental uncertainties Note that in PDF’s using LHC data, the PDF uncertainties become correlated with the experimental uncertainties This complicates the analysis as these correlations need to be accounted for This complicates the analysis as these correlations need to be accounted for However, it will also reduce PDF uncertainties for the physics objectives However, it will also reduce PDF uncertainties for the physics objectives To what extend such a program (or limited version) would work requires some study. The PDF sets with uncertainties form a good starting point for such a study. To what extend such a program (or limited version) would work requires some study. The PDF sets with uncertainties form a good starting point for such a study.

PDF library interface for Monte Carlo Programs Thursday, 15:00-17:00, TH-Auditorium Thursday, 15:00-17:00, TH-Auditorium “The LHAPDF interface: current status and future”, Mike Whalley “The LHAPDF interface: current status and future”, Mike Whalley If one want to use the PDF sets with uncertainties to make predictions, they need to be integrated in the Monte Carlo programs: If one want to use the PDF sets with uncertainties to make predictions, they need to be integrated in the Monte Carlo programs: A PDF fit becomes a set of individual PDF’s A PDF fit becomes a set of individual PDF’s Gaussian: → Choose a parameterization → Assume Gaussian uncertainty in the parameters → We can characterize the entire probability density by 1+#parameters(*2) PDF sets Gaussian: → Choose a parameterization → Assume Gaussian uncertainty in the parameters → We can characterize the entire probability density by 1+#parameters(*2) PDF sets Random Sampling: → Choose a parameterization → Draw “random” unit weight PDF’s from the probability density in PDF parameter space → Number of PDF’s used in set determines the accuracy of the PDF uncertainty Random Sampling: → Choose a parameterization → Draw “random” unit weight PDF’s from the probability density in PDF parameter space → Number of PDF’s used in set determines the accuracy of the PDF uncertainty Characteristic is that a fit consist of a number of PDF’s Characteristic is that a fit consist of a number of PDF’s This would be very inconvenient within PDFLIB This would be very inconvenient within PDFLIB The LHAPDF interface was designed for the PDF sets with uncertainties The LHAPDF interface was designed for the PDF sets with uncertainties Currently a FORTRAN implementation of this interface is available. It gives a uniform interface to the error PDF's of CTEQ, MRST, and others Currently a FORTRAN implementation of this interface is available. It gives a uniform interface to the error PDF's of CTEQ, MRST, and others

The LHAPDF interface At the core of the interface are 3 subroutine calls: At the core of the interface are 3 subroutine calls: call InitPDFset(name) call InitPDFset(name) This sets up the PDF set. The name is the path to an external file which defines the PDF set. This sets up the PDF set. The name is the path to an external file which defines the PDF set. call InitPDF(mem) call InitPDF(mem) This call selects an individual member of the defined set. The 0 entry always refers to the best fit. This call selects an individual member of the defined set. The 0 entry always refers to the best fit. call evolvePDF(x,Q,f) call evolvePDF(x,Q,f) This returns the values of the PDF in array f at parton fraction x and scale Q This returns the values of the PDF in array f at parton fraction x and scale Q Apart from some cosmetic changes there are a few larger issues which came up : Apart from some cosmetic changes there are a few larger issues which came up : Compatibility with PDFLIB is desirable Compatibility with PDFLIB is desirable LHAPDF within the PDFLIB interface LHAPDF within the PDFLIB interface PDFLIB within the LHAPDF interface PDFLIB within the LHAPDF interface Evolution code issues Evolution code issues Different fits were done with different evolution codes. Even up to this date not all NLO evolution codes give the same answer. Different fits were done with different evolution codes. Even up to this date not all NLO evolution codes give the same answer. Keeping member PDF members in memory for quick re-initialization Keeping member PDF members in memory for quick re-initialization In Monte Carlo’s one often want to loop over the PDF’s for each generated event (instead of the reverse) In Monte Carlo’s one often want to loop over the PDF’s for each generated event (instead of the reverse) Only the zero-mass variable-flavor-number scheme implemented Only the zero-mass variable-flavor-number scheme implemented

Heavy flavor PDF’s at the LHC Friday, 10:00-12:00, TH-Auditorium Friday, 10:00-12:00, TH-Auditorium “Heavy quark structure functions”, Kajaru Mazumdar “Heavy quark structure functions”, Kajaru Mazumdar Initial state heavy flavors are important at the LHC. To what extend they are an issue has to be investigated: Initial state heavy flavors are important at the LHC. To what extend they are an issue has to be investigated: In principle Q>>m and the commonly used zero-mass variable-flavor-scheme is applicable In principle Q>>m and the commonly used zero-mass variable-flavor-scheme is applicable The heavy flavors “turn on” at some scale Q0 close to m. (That is, it is zero below this scale and generated through evolution above the scale) The heavy flavors “turn on” at some scale Q0 close to m. (That is, it is zero below this scale and generated through evolution above the scale) This would make adding in heavy flavors uncomplicated. Use the TEVATRON experiments (also Q>>m) to determine the two scales Q0. This would make adding in heavy flavors uncomplicated. Use the TEVATRON experiments (also Q>>m) to determine the two scales Q0. Possible complications: Possible complications: The condition Q>>m depends on precision of measurement and observable under consideration. The approximation uncertainty is of order (m/Q)^2 The condition Q>>m depends on precision of measurement and observable under consideration. The approximation uncertainty is of order (m/Q)^2 Removing the approximation would require implementation of a non-zero mass variable-flavor- scheme. Depending on the scheme the matrix element calculations would need to be modified to the correct variable-flavor-scheme Removing the approximation would require implementation of a non-zero mass variable-flavor- scheme. Depending on the scheme the matrix element calculations would need to be modified to the correct variable-flavor-scheme There might be some intrinsic structure at Q0 which the simple turn-on procedure cannot describe There might be some intrinsic structure at Q0 which the simple turn-on procedure cannot describe

Potential Workshop goals Comparisons between different error PDF sets for some key LHC experiments Comparisons between different error PDF sets for some key LHC experiments Do the different sets give overlapping predictions? Do the different sets give overlapping predictions? If not, what is the reason? If not, what is the reason? Prior (or parameterization) too restrictive? Prior (or parameterization) too restrictive? Treatment of theory for input experiments? Treatment of theory for input experiments? What LHC measurements can constrain the PDF’s such that it has an impact on other physics measurements at the LHC. For example: What LHC measurements can constrain the PDF’s such that it has an impact on other physics measurements at the LHC. For example: Reducing the PDF uncertainty on the W-mass, Top quark cross section, Higgs cross section………. Reducing the PDF uncertainty on the W-mass, Top quark cross section, Higgs cross section………. Need for a fitting tool? How could that look? Need for a fitting tool? How could that look? Next evolutionary step for LHAPDF code Next evolutionary step for LHAPDF code Building in/addressing the user requests Building in/addressing the user requests Memory storage of PDF set members Memory storage of PDF set members Legacy issues with PDFLIB Legacy issues with PDFLIB Implementation of variety of evolution codes Implementation of variety of evolution codes Clear support agreements Clear support agreements How to add a new PDF set How to add a new PDF set Who will take care of the code Who will take care of the code Distribution web site Distribution web site