11-15 September Civic Auditorium TAUP2007 (Sendai) Displacement noise free interferometory for gravitational wave detection National Astronomical.

Slides:



Advertisements
Similar presentations
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Advertisements

Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham GWADW, ELBA, May 2008 Virtual Interferometry for future GW detectors.
1 Science Opportunities for Australia Advanced LIGO Barry Barish Director, LIGO Canberra, Australia 16-Sept-03 LIGO-G M.
LIGO Gravitational Waves Barry Barish Feb 23, 2000 Lake Louise Winter Institute.
1 Observing the Most Violent Events in the Universe Virgo Barry Barish Director, LIGO Virgo Inauguration 23-July-03 Cascina 2003.
Shot noise in GW detectors G González. x Power (ASDC) bright dark /2 The dark fringe L+  L L-  L i  L  P=P 0 sin 2 (  t+k  l) = (P 0 /2) (1+sin.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Online Veto Analysis of TAMA300 Daisuke Tatsumi National Astronomical Observatory of Japan The TAMA Collaboration 8 th GWDAW19 Dec Milwaukee, UWM,
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Status of LCGT and CLIO Masatake Ohashi (ICRR, The University of TOKYO) and LCGT, CLIO collaborators TAUP2007 Sendai, Japan 2007/9/12.
Andreas Freise ILIAS WG1 Meeting CERN (29-Mar-07) GEO 600 Simulation Group.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Several Fun Research Projects at NAOJ for the Future GW Detectors
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Modulation techniques for length sensing and control of advanced optical topologies B.W. Barr, S.H. Huttner, J.R. Taylor, B. Sorazu, M.V. Plissi and K.A.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
LIGO- G R Telecon on June, Mach-Zender interferometer to eliminate sidebands of sidebands for Advanced LIGO Osamu Miyakawa, Caltech.
1 Wan Wu, Volker Quetschke, Ira Thorpe, Rodrigo Delgadillo, Guido Mueller, David Reitze, and David Tanner Noise associated with the EOM in Advanced LIGO.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Bridging the Gap between Terrestrial Detectors and LISA Elba 2002 May 24, 2002 Seiji Kawamura National Astronomical Observatory of Japan.
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
Isola d’Elba, Italy 2006GWADW-VESF meeting Diagonalizing sensing matrix of RSE interferometer Shuichi Sato TAMA project National Astronomical Observatory.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Ponderomotive amplifier to reduce shot noise Kyoto May Kentaro Somiya 1 and Yanbei Chen 2 Waseda Inst. for Adv. Study 1 and Caltech 2.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
DECIGO – Japanese Space Gravitational Wave Detector International Workshop on GPS Meteorology January 17, Tsukuba Center for Institutes Seiji Kawamura*
Institute for Cosmic Ray Research Univ. of Tokyo Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G Z Osamu Miyakawa,
MOTIVATION OF THIS PROJECT Testing the control scheme with a prototype interferometer to demonstrate the control of the tuned RSE for LCGT is necessary.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) 7th Gravitational Wave Data Analysis Workshop December 17, International Institute.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
LIGO G M Intro to LIGO Seismic Isolation Pre-bid meeting Gary Sanders LIGO/Caltech Stanford, April 29, 2003.
Space Gravitational Wave Antenna DECIGO Project 3rd TAMA Symposium February 7, Institute for Cosmic Ray Research, Japan Seiji Kawamura National.
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
LOGO Gravitational Waves I.S.Jang Introduction Contents ii. Waves in general relativity iii. Gravitational wave detectors.
Active Vibration Isolation using a Suspension Point Interferometer Youichi Aso Dept. Physics, University of Tokyo ASPEN Winter Conference on Gravitational.
The cancelation of displacement- and frequency- noise using four mach-zehnder interferometer Keiko Kokeyama Ochanomizu University / NAOJ.
Interferometer configurations for Gravitational Wave Detectors
A look at interferometer topologies that use reflection gratings
Current and future ground-based gravitational-wave detectors
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Homodyne readout of an interferometer with Signal Recycling
Quantum effects in Gravitational-wave Interferometers
Homodyne or heterodyne Readout for Advanced LIGO?
Advanced LIGO Quantum noise everywhere
Quantum Optics and Macroscopic Quantum Measurement
Squeezed states in GW interferometers
Current Status of TAMA300 Shuichi Sato
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Some ideas on advanced Virgo Twins A. Giazotto-INFN Pisa
Presentation transcript:

11-15 September Civic Auditorium TAUP2007 (Sendai) Displacement noise free interferometory for gravitational wave detection National Astronomical Observatory of Japan, Ochanomizu University A, LIGO project, California Institute of Technology B Kyoto University C, Max-Planck-Institut für Gravitationsphysik D Shuichi Sato, Keiko Kokeyama A, Seiji Kawamura, Robert L.Ward B, Atsushi Nishizawa C, Yanbei Chen D, Archana Pai D and Kentaro Somiya D

Introduction Displacement noise Fundamental noises: Seismic, thermal, radiation pressure, etc… Practical/technical noises: alignment noise, electronics noise, etc… If, the displacement noise has gone… Shot-noise-limited interferometer in all frequency band If, it is shot-noise-limited interferometer… The sensitivity goes better with laser power However… Currently suggested DFI does not apply, for audio frequency band Cancellation of Displacement noise Better shot noise level September Civic Auditorium TAUP2007 (Sendai)

History Reference Kawamura and Chen, PRL 93 (2004) Chen and Kawamura, PRL 96 (2006) Chen, Pai, Somiya, Kawamura, Sato, Kokeyama and Ward, PRL 97 (2006) , (gr-qc/ ) Sato, Kawamura, Kokeyama, Ward, Chen, Pai and Somiya, PRL 98 (2007) , (gr-qc/ ) September Civic Auditorium TAUP2007 (Sendai)

History Reference Kawamura and Chen, PRL 93 (2004) Chen and Kawamura, PRL 96 (2006) Chen, Pai, Somiya, Kawamura, Sato, Kokeyama and Ward, PRL 97 (2006) , (gr-qc/ ) Sato, Kawamura, Kokeyama, Ward, Chen, Pai and Somiya, PRL 98 (2007) , (gr-qc/ ) September Civic Auditorium TAUP2007 (Sendai)

Principle of DFI GWs Displacement Point1: Difference of effects, GWs v.s. Displacement GWs: accumulated phase shift on the whole path Displacement: instantaneous Point2: Multiple interferometer network Share the displacement information Manipulation of the signals Cancel the displacement information Remaining GWs signals DFI: different approach Suppression v.s. Cancellation September Civic Auditorium TAUP2007 (Sendai)

DFI configuration 3-dimensional Mach-Zehnder interferometer Light travels on the rigdeline 2-sets of bi-directional Mach-Zehnder interferometers 2-Beam Splitters at the tops 4-Folding mirrors at the side apexes One of DFI configuration (most simple) Still looking for other configuration September Civic Auditorium TAUP2007 (Sendai)

DFI features 3-dimensional Mach-Zehnder interferometer Combination of 4-interferometer’s output Complete cancellation of optic’s displacements Remaining GW signals Effective frequency fc ~100MHz for L=1m Chen et.al, PRL 97 (2006) September Civic Auditorium TAUP2007 (Sendai)

DFI features 3-dimensional Mach-Zehnder interferometer Combination of 4-interferometer’s output Complete cancellation of optic’s displacements Remaining GW signals Effective frequency fc ~100MHz for L=1m Chen et.al, PRL 97 (2006) September Civic Auditorium TAUP2007 (Sendai)

Experiment (1) -Optical layout - Proof-of-principle experiment To confirm Cancellation of FM displacement Cancellation of BS displacement Finite sensitivity to GWs signals Partial demonstration Using one set of bi-directional Mach-Zehnder interferometer September Civic Auditorium TAUP2007 (Sendai)

Experiment (2) -Setup - (前回の学会で報告) For GWs For displacement noise of FM 2-D bi-directional MZI Sharing optical paths Transfer function measurement From D/GWs simulator to DFI D/GWs simulation FM: EOM at the center of the path GWs: EOM at the asymmetric position -> makes “GWs-like” signal September Civic Auditorium TAUP2007 (Sendai)

Experiment (3) - Cancellation of FM displacement- MAX50dB MZI2 output MZI1 output DFI output DFI output September Civic Auditorium TAUP2007 (Sendai)

Experiment (4) - Sensitivity to GWs- GWs: remaining around fc MZI2 output MZI1 output DFI output September Civic Auditorium TAUP2007 (Sendai)

First DFI using conventional interferometory DFI feature was confirmed FM cancellation (BS cancellation: in separate experiment) Sensitive to GWs Next: Spectrum (sensitivity) measurement of DFI: ongoing 3-D complete DFI: just started Invention of new configuration for practical application Summary and next September Civic Auditorium TAUP2007 (Sendai)