Physics 2113 Lecture 01: WED 14 JAN CH13: Gravitation I Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 5/10/2015 Isaac Newton (1642–1727)

Slides:



Advertisements
Similar presentations
Electricity. Electrostatic The Electric Field Electric charge. Conductors and Insulators Coulomb´s Law The Electric field. Electric Field Lines Calculating.
Advertisements

The Beginning of Modern Astronomy
Chapter 21 Electric Charge
EMLAB 1 Introduction to electromagnetics. EMLAB 2 Electromagnetic phenomena The globe lights up due to the work done by electric current (moving charges).
Electric Fields P.1 Concept: Forces between charges are action- reaction pairs (N3L)
Physics 1502: Lecture 18 Today’s Agenda Announcements: –Midterm 1 distributed available Homework 05 due FridayHomework 05 due Friday Magnetism.
Waves can be represented by simple harmonic motion.
Physics 2113 Lecture 02: WED 27 AUG CH13: Gravitation II Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 7/2/2015 Isaac Newton (1642–1727)
Chapter 13 Gravitation.
Physics 2113 Lecture 01: MON 25 AUG
Physics 2102 Inductors, RL circuits, LC circuits Physics 2102 Gabriela González.
Fall 2008Lecture 1-1Physics 231 Electric Charges, Forces, and Fields.
Jaypee Institute of Information Technology University, Jaypee Institute of Information Technology University,Noida Department of Physics and materials.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Physics 2102 Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González.
Chapter 7 Electrodynamics
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Nov PHYS , Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #20, Review Part 2 Tues. November Dr. Andrew Brandt HW28 solution.
Physics 2102 Lecture 01: MON 12 JAN Electric Charge I Physics 2102 Jonathan Dowling Charles-Augustin de Coulomb (1736–1806) Version: 9/14/2015 Benjamin.
PY212 Electricity and Magnetism I. Electrostatics.
Physics 2113 Lecture 03: WED 17 JAN CH13: Gravitation III Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 9/18/2015 Isaac Newton (1642–1727)
Universal Gravitation
1 ENE 325 Electromagnetic Fields and Waves Lecture 1 Electrostatics.
Gneral Physics II, Syllibus, By/ T.A. Eleyan1 General Physics II Instructor Tamer A. Eleyan 2008/2009.
 Chapter 15 – Electric Forces and Fields  Chapter 16 – Electrical Energy and Capacitance  Chapter 17 – Current and Resistance  Chapter 18 – Direct.
Physics 32 Elementary Physics II. Course description This course is the second part of a series of calculus-based elementary Physics courses taken by.
Physics 2102 Lecture 04: FRI 23 JAN Electric Charge I Physics 2113 Jonathan Dowling Charles-Augustin de Coulomb (1736–1806) Version: 10/7/2015 Benjamin.
Physics 2102 Introduction to Electricity, Magnetism and Optics Physics 2102 Gabriela González Charles-Augustin de Coulomb ( )
Physics 2102 Lecture 1 Electric Charge Physics 2102 Jonathan Dowling Charles-Augustin de Coulomb ( ) Version: 1/17/07.
The Final is Coming, The Final is Coming. Run. The Final is coming.
Electric Charge and Electric Field
MAGNETOSTATIK Ampere’s Law Of Force; Magnetic Flux Density; Lorentz Force; Biot-savart Law; Applications Of Ampere’s Law In Integral Form; Vector Magnetic.
1 Exam 2 covers Ch , Lecture, Discussion, HW, Lab Chapter 27: Electric flux & Gauss’ law Chapter 29: Electric potential & work Chapter 30: Electric.
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism (Electrostatics) a. Electric Charge, Electric Field & Gauss’ Law.
Physics for Bioscience (Part II) Electricity Magnetism Waves Sound Optics by Dr. Chittakorn polyon Department of Physics, Faculty of Science,
1 ENE 325 Electromagnetic Fields and Waves Lecture 1 Electrostatics.
Exam 2 covers Ch , Lecture, Discussion, HW, Lab
Announcements  FINAL EXAM: PHYS (10 am class): Monday, May 10-11:50 am PHYS (11 am class): Wednesday, May 10-11:50 am  NO New.
Flux Capacitor (Schematic)
Physics 2102 Lecture 01: TUE 19 JAN Electric Charge Physics 2102 Jonathan Dowling Benjamin Franklin (1705–1790) Charles-Augustin de Coulomb (1736–1806)
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
1 MAGNETOSTATIC FIELD (MAGNETIC FORCE, MAGNETIC MATERIAL AND INDUCTANCE) CHAPTER FORCE ON A MOVING POINT CHARGE 8.2 FORCE ON A FILAMENTARY CURRENT.
Magnetic Fields. Magnetic Fields and Forces a single magnetic pole has never been isolated magnetic poles are always found in pairs Earth itself is a.
Physics 1202: Lecture 12 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Electricity. Electrostatic The Electric Field Electric charge. Conductors and Insulators Coulomb´s Law The Electric field. Electric Field Lines Calculating.
1 Mid-term review Charges and current. Coulomb’s Law. Electric field, flux, potential and Gauss’s Law. Passive circuit components.  Resistance and resistor,
PHY152 Topics Static Electricity –Electric charge –Coulomb’s Law –Electric field –Electric potential –Capacitance (electrical energy storage)
1 Mid-term review Charges and current. Coulomb’s Law. Electric field, flux, potential and Gauss’s Law. Passive circuit components.  Resistance and resistor,
Chapters 17 through 23 Midterm Review. Midterm Exam ~ 1 hr, in class 15 questions 6 calculation questions One from each chapter with Ch. 17 and 18 combine.
Dan Merrill Office: Room 36 Office Hours: M,W ( pm) Course Info: courses/phys221/
Lecture 23: WED 11 MAR Ampere’s law Physics 2102 Jonathan Dowling André Marie Ampère (1775 – 1836)
Physics 2113 Lecture 02 CH13: Gravitation II Physics 2113
Fundamentals of Applied Electromagnetics
Exam Information In class next Friday, ~1 hr.
Mass training of trainers General Physics 2
Chapter 13 Gravitation.
Electromagnetic Theory
Exam 3 covers Lecture, Readings, Discussion, HW, Lab
Physics 2113 Lecture 02: FRI 16 JAN
Physics 2113 Lecture 01 CH13: Gravitation I Physics 2113
University Physics Final Exam Overview.
Physics 2102 Lecture: 03 FRI 16 JAN
Lecture 10 Biot-Savart’s Law.
Chapter 13 Gravitation.
PY212 Electricity and Magnetism
Physics 2113 Lecture 06: WED 28 JAN
Phys 16 General Physics IIa
Physics 2113 Lecture 06: MON 08 SEP
Presentation transcript:

Physics 2113 Lecture 01: WED 14 JAN CH13: Gravitation I Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 5/10/2015 Isaac Newton (1642–1727)

Who am I & Why am I Here? Office hours: Nicholson 102 (Tutoring Lab), MWF 01:20PM– 02:00PM (or by appointment made by ) My Own Research: Quantum Optics Quantum Computing Foundations of Quantum Theory Prof. Jonathan P. Dowling 1994–98: Research Physicist, US Army Aviation & Missile Command 1998–2004: Principal Scientist, NASA Jet Propulsion Laboratory 2004–Present: Director, Hearne Institute for Theoretical Physics, LSU 1994–98: Research Physicist, US Army Aviation & Missile Command 1998–2004: Principal Scientist, NASA Jet Propulsion Laboratory 2004–Present: Director, Hearne Institute for Theoretical Physics, LSU

Course Details Main Class Website for All Sections: Syllabus, Schedule, Grading Policy, Exam Solutions, … Lectures will be posted in this section’s website: Text: Fundamentals of Physics, Halliday, Resnick, and Walker, 10th edition with free Wiley PLUS if purchased in LSU bookstore. We will cover chapters 13, Exam I: 8:00-9:00PM MON 09 FEB in Cox Auditorium Exam II: 8:00-9:00PM MON 02 MAR in Cox Auditorium Exam III: 8:00-9:00PM MON 30 MAR in Cox Auditorium FINAL: 10:00AM-12:00N SAT 09 MAY Tutoring: Free Tutors in Middleton & 102 Nicholson Hall. No Moodle.

Course Details: Homework Web-based system: WilyPLUS included with book. To register: Go to Select Login if you have an account. Create account if you do not. One Assignment Per Week Due 11:59PM Thursdays First HW Is Posted Due NEXT THU 22 11:59PM

Course Details: Grading Midterms points each Total: 300 points Final Exam points Total: 200 points Homework - 75 points Total: 75 points In Class Participation – 25 pointsTotal: 25 points TOTAL: 600 points Your numerical grade will be the total number of points you obtain, divided by 6.0. Given your numerical grade, your letter grade will be at least: A: 90–100 B: 75–89 C: 60–74 D: 50–59 F: <50

What Are We Going to Learn? Ch. 13: Gravitation, Newton’s Law of Gravity, superposition, gravitational potential energy, Gauss’s Law, Kepler’s Laws, escape speed, orbital mechanics (i.e., Rocket Science) Ch. 21: Electric charge, conductors and insulators, Coulomb’s Law, quantization and conservation principles for charge Ch. 22: Electric fields, field maps, fields due to various charge geometries, point charges and dipoles in an electric field Ch. 23: Electric flux, Gauss’s Law for electric fields, Coulomb’s Law from Gauss’s Law, isolated charged conductors, considerations of symmetry Ch. 24: Electric potential energy and work, electric potential, equipotentials, potentials due to discrete and continuous charge distributions, isolated conductors, determining the electric field from the potential Ch. 25: Capacitors and capacitance, series and parallel arrangements, stored energy, dielectric materials, Gauss’s Law with dielectric Ch. 26: Electric current, current density, non-perfect conductors, resistivity and resistance, Ohm’s Law, power and energy in electric circuits, semiconductor materials, superconductors Ch. 27: DC circuits, energy and work, electromotive force, single and multi-loop circuits, parallel and series combinations of resistances, Kirchoff’s Laws, RC circuits, time constant Ch. 28: Magnetic fields, forces on moving charges, crossed fields, Hall effect, cyclotrons, force and torque on current carrying wires and loops, magnetic dipoles and dipole moment Ch. 29: Sources of magnetic field, Biot-Savart Law, calculating the magnetic field for various current geometries, Ampere’s Law, consideration of symmetry, forces between parallel currents, solenoids and toroids, a coil as a dipole Ch. 30: Electromagnetic induction, Faraday’s Law, Lenz’s Law, induced electric fields, induction and inductors, RL circuits and time constants, energy stored in magnetic fields, energy density in magnetic fields, mutual inductance Ch. 31:Electromagnetic oscillators, series RLC circuit, transformers, forced oscillators, resonant circuits, damped oscillators Ch. 32: Gauss’s Law for magnetism, displacement currents, induced magnetic fields, Maxwell’s equations, magnets and magnetic materials. Ch. 33: Electromagnetic waves, electromagnetic spectrum, travelling EM waves, Poynting Vector, energy transport, radiation pressure, polarization, reflection and refraction.

Let’s Get Started! Gravitation NASA Gravity Recovery and Climate Experiment — What Do the Two Satellites Measure?

13.2 Newton’s Law of Gravitation: May The Force Be With You Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10 –11 Nm 2 /kg 2 =6.67 x10 –11 m 3 /kg s 2. Fig (a) The gravitational force on particle 1 due to particle 2 is an attractive force because particle 1 is attracted to particle 2. (b) Force is directed along a radial coordinate axis r extending from particle 1 through particle 2. (c) is in the direction of a unit vector along the r axis.

13.2 Newton’s Law of Gravitation: How To Measure Newton’s Constant? Henry Cavendish the G-Whiz! Henry Cavendish (1731–1810) Cavendish experiment measured G = 6.67 x10 –11 Nm 2 /kg 2 Also was first direct confirmation of inverse square law: G is the constant of proportionality.

13.2 Gravitation and the Principle of Superposition For n interacting particles, we can write the principle of superposition for the gravitational forces on particle 1 as Here F 1,net is the net force on particle 1 due to the other particles and, for example, F 13 is the force on particle 1 from particle 3, etc. Therefore, The gravitational force on a particle from a real (extended) object can be expressed as: Here the integral is taken over the entire extended object. ICPP: How would you calculate total force on central mass if all masses equal?

13.2 Newton’s Law of Gravitation: The Shell Game A uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell’s mass were concentrated at its center. The force on the apple is the same if all the Earth’s mass is squashed to the center! F = 0.80 N The components of the force in the x-direction cancel out by symmetry. The components of the net force in the z-direction add up by symmetry. The total net force integrates up as if all the mass of the shell were at the center. N S Applying the shell law to concentric shells proves can treat Earth (uniform sphere) as if all mass is at center. dF up dF down x z dF net m

13.2 Newton’s Law of Gravitation: The Shell Game — Sketch of Proof Calc III & trigmarole! QED Law of Cosines

1m1m 2m2m 3m3m 4m4m P P P P d d d d

SP13.01: Net Gravitational Force: Figure 13-4a shows an arrangement of three particles, particle 1 of mass m 1 = 6.0 kg and particles 2 and 3 of mass m 2 =m 3 =4.0 kg, and distance a =2.0 cm. What is the net gravitational force 1,net on particle 1 due to the other particles? Relative to the positive direction of the x axis, the direction of F 1,net is: Calculations: Note: In order to get the correct angle you MUST draw the vectors! ICPP: Which way does the force vector on m 1 point?

Double the distance 1/4 th the force!

13.4: Gravitation Near Earth’s Surface If the particle is released, it will fall toward the center of Earth, as a result of the gravitational force, with an acceleration we shall call the gravitational acceleration a g. Newton’s second law tells us that magnitudes F and a g are related by If the Earth is a uniform sphere of mass M, the magnitude of the gravitational force from Earth on a particle of mass m, located outside Earth a distance r from Earth’s center, is Therefore, ICPP: How would you estimate a g at the orbit of the moon.

Gravitational Force vs. Gravitational Field Gravitational Force: (Units: Newtons = N) Gravitational Field: (Units: m/s 2 = 100 Gal) Given the Field, Find the Force: Gravitational Field Lines m Find the Force: (Vector Form) Note: Field Exists in Empty Space Whether Test Mass m is There or Not!

Sample Problem 13.02

Gravitational Field: Flux and Inverse Square Law Total Number of Field Lines (= Flux) Is A Constant! They Spread Out Over Surface of Expanding (Imaginary) Sphere! Surface Area of Sphere Increases Like r 2 Hence Gravitational Field Strength (#Lines / Area) Decreases Like 1/r 2 Isaac Newton Robert Hooke vs