Chapter 29.3. A. Star Size Mass – the mass of a star determines the size, temperature, and brightness of the star. - The greater the mass, the greater.

Slides:



Advertisements
Similar presentations
Evolution of Stars.
Advertisements

What is the fate of the sun and other stars??
Lives of Stars.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Stars and Their Characteristics
Life Cycle of Stars 1st Step: Stars form from nebulas
Star Life Cycle.
A star is born… A star is made up of a large amount of gas, in a relatively small volume. A nebula, on the other hand, is a large amount of gas and dust,
Life Cycle of Stars.
Life Cycles of Stars.
The Life Cycle of a Star.
Objectives Determine the effect of mass on a star’s evolution.
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
DO NOW QUESTION What life stage is our Sun currently in? What do you think will happen to our Sun as it gets older?
Chapter 26 Part 1 of Section 2: Evolution of Stars
Mike Chris. Stars begin as a nebula, or clouds scattered dust made mostly of hydrogen As the nebula collapses the contents of it begin to to heat up.
THE LIFE OF A STAR
Lives of stars.
TOPIC: Astronomy AIM: What are stars?
THE LIFE CYCLES OF STARS. In a group, create a theory that explains: (a)The origin of stars Where do they come from? (b)The death of stars Why do stars.
Pg. 12.  Mass governs a star’s properties  Energy is generated by nuclear fusion  Stars that aren’t on main sequence of H-R either have fusion from.
Birth and Life of a Star What is a star? A star is a really hot ball of gas, with hydrogen fusing into helium at its core. Stars spend the majority of.
Life Cycle of the Stars By Aiyana and Meredith
The Life Cycles of Stars RVCC Planetarium - Last updated 7/23/03.
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Life Cycle of a Star. Nebula(e) A Star Nursery! –Stars are born in nebulae. –Nebulae are huge clouds of dust and gas –Protostars (young stars) are formed.
Ch Stellar Evolution. Nebula—a cloud of dust and gas. 70% Hydrogen, 28% Helium, 2% heavier elements. Gravity pulls the nebula together; it spins.
The Life Cycle of a Star.
Life Cycle of Stars Nebula hundreds of light years in size contract under gravity
Life Cycle of Stars Birth Place of Stars:
LIFE CYCLE OF A STAR.
Life Cycle of a Star. NEBULA A huge cloud of gas and dust within a galaxy where new stars are born. A nebula can be several light-years across.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Life Cycle of a Star. NEBULA A huge cloud of gas and dust within a galaxy where new stars are born. A huge cloud of gas and dust within a galaxy where.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
The Life Cycle of a Star By Andy Kimmelshue. The birth of a star Stars are formed from gas and dust pulled together by gravity inside of a Nebula. A.
Life Cycle of a Star The changes that a star goes through is determined by how much mass the star has. Two Types of Life Cycles: Average Star- a star with.
Life Cycle of Stars 4-3 The Life cycle of a star depends upon the size (Mass) of the star. Our Sun is an Average size Star.
Lives of Stars 8 th Grade Science
Bell Ringer 10/13 Why do we celebrate Columbus Day?
STARS.
Notes – How Stars Shine Chapter 12, Lesson 2 They Might Be Giants
By: Monkeyrocker92 And G-menfan. Nebula  A nebula is a big cloud of gas and dust.
The Star Cycle. Birth Stars begin in a DARK NEBULA (cloud of gas and dust)… aka the STELLAR NURSERY The nebula begins to contract due to gravity in.
The Life Cycle of Stars.
Stars and Their Characteristics Constellations Constellation- groups of stars that appear to form patterns –88 constellations can be seen from n.
 How Stars Form: -The space around stars contains gas/dust  A nebula is a large cloud of dust/gas, some nebulas glow lit by other stars and some are.
THE LIFE CYCLE OF A STAR Objective: I will compare and contrast the life cycle of stars based on their mass.
Stellar Evolution From Nebula to Neutron Star. Basic Structure The more massive the star the hotter it is, the hotter it is the brighter it burns Mass.
Star Types & Life Cycle of a Star. Types of Stars 2 Factors determine a Star’s Absolute Brightness: 1.Size of Star and 2. Surface Temperature of Star.
Life Cycle of a Star! Chapter 28 Section 3.
Life Cycle of Stars 1st Step: Stars form from nebulas
The Engines of our Universe
Stellar Evolution Life Cycle of stars.
Life Cycle of Stars 1st Step: Stars form from nebulas
Stellar Evolution.
Life Cycle of Stars 1st Step: Stars form from nebulas
Notes using the foldable
Life Cycle of a Star.
Life Cycle of Stars 1st Step: Stars form from nebulas
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
The Life Cycle of a Star.
Stars form from nebulas Regions of concentrated dust and gas
Review: 1. How is the mass of stars determined?
Life Cycle of Stars 1st Step: Stars form from nebulas
Life Cycle of Stars 1st Step: Stars form from nebulas
STARS.
The Life Cycle of a Star.
Life Cycle of Stars 1st Step: Stars form from nebulas
Presentation transcript:

Chapter 29.3

A. Star Size Mass – the mass of a star determines the size, temperature, and brightness of the star. - The greater the mass, the greater the gravity. - The greater the gravity the hotter and brighter the star burns. - Hotter and brighter stars burn up fuel at a faster rate.

B. Stellar Evolution 1. Beginning - Stars form from a large rotating cloud of gas and dust called a nebula. - As gravitational forces cause the cloud to contract, a center, called a protostar, begins to form. - When the core temperature of the protostar reaches a high enough temperature, fusion of hydrogen begins and a star is born. Public Domain –

2. Small Stars (Sun-Sized) - Sun-sized stars take about 10 billion years to expend their hydrogen fuel. - When the hydrogen fuel in the core is exhausted, the star swells to become a red giant. - The helium in the core fuses to form carbon until the helium is used up. - At this point the star shrinks to form a white dwarf. Wikipedia Image of Sirius A and Sirius B taken by the Hubble Space Telescope. Sirius B, which is a white dwarf, can be seen as a faint dot to the lower left of the much brighter Sirius A

3. Large Stars - These stars use up their fuel much quicker and therefore do not last as long as smaller stars. - When their fuel is consumed, the internal gravitational forces may cause electrons & protons in the core to fuse together to form neutrons, thus forming a neutron star. - Neutron stars may form pulsars, or rotating beacons of light. Public Domain –

- Others may begin to fuse heavier elements until an iron core develops and explodes in a supernova. - Very massive stars may be too large to form neutron stars and collapse in on themselves to from a black hole. Video – Fusion Produces Elements (3:42 min)