Length scale dependent aging and plasticity of a colloidal polycrystal under oscillatory shear Elisa Tamborini Laurence Ramos Luca Cipelletti Laboratoire Charles Coulomb CNRS-Université Montpellier 2 Montpellier, France
Motivation MECHANICAL PROPERTIES OF ATOMIC POLYCRYSTALS [Kumar Acta Mater. 2003] 2 competiting processes to control deformation Grain-boundary (GB) sliding Dislocation slip [Richeton Nature Materials2005] DISLOCATIONGB J. Weiss, LGGE/CNRS Extremely small grains Unrealistically high strains Numerical simulations Experiments on metals Difficulty of preparing samples with small grains Difficulty of measurements
Motivation OUR OBJECTIVES Use colloidal crystals as analog of atomic crystals to get time- and space-resolved data on the behavior of the materials under mechanical stress Investigate POLYCRYSTALLINE samples, whereas most previous experiments were on «monocrystals» Polycrystals = a disordered network of grain-boundaries
Experimental sample 3D NETWORK OF Grain Boundaries NPs confined in the grain-boundaries analogy with impurities in atomic & molecular systems [Lee Metall. Mater. Trans. A 2000] [Losert PNAS 1998] Block-copolymer micellar crystal (fcc, lattice parameter ~ 30 nm) + nanoparticles (~ 1% or less, diameter 35 nm) = temperature ~ 30 nm fcc lattice 10 m
Home-made shear cell laser spring motor moving slide fixed slide 25 mm
Observation by confocal microscopy t t = 1t = 2t = 3 50 µm t = 1 t = 2617 Overlay of 2 images taken at ~ 5000 cycles Deformation of the crystalline grains PROTOCOL (analogy to fatigue test in material science)
10 µm q 1 = 0.12 µm -1 - q 10 = 3.72 µm -1 Experimental set-up DLS under shear strain GBs dynamics Tamborini et al., Langmuir 2012 Shear-cell coupled to Mid-Angle Light Scattering set-up
Data analysis INTENSITY CORRELATION & CHARACTERISTIC LENGTH SCALES g 2 (t, )-1= q // t t = it = i+1t = i+2 t time delay between shear cycle =1 =2
Elasticity vs Plasticity ELASTIC SAMPLE (PDMS)
Elasticity vs Plasticity ELASTIC SAMPLE (PDMS) PLASTIC SAMPLE (POLYCRYSTAL) rr
Visco-elasticty CHOICE OF THE STRAIN AMPLITUDES ElasticPlasticViscous = 1.6 % = 2.5 % = 4.6 % = 5.2 % = 3.5 %
Relaxation time vs # of shear cycles = 4.6 % AGING law
Relaxation time vs # of shear cycles q AGING laws = 4.6 %
Scaling = 4.6 %
Scaling
STEADY STATE RELAXATION TIME Steady state ballistic motion 2 grain size)
STEADY STATE RELAXATION TIME Steady state and cross-over from aging to steady CROSSOVER TIME FROM AGING TO STEADY ballistic motion
GB dynamics under shear – a physical picture TYPICAL SAMPLE CONFIGURATION 0 Stationary state « reshuffling » length scale
GB dynamics under shear – a physical picture CROSSOVER TIME FROM AGING TO STEADY RESHUFFLING LENGTH SCALE t c =1 grain size
Conclusion and open questions Scaling of the “reshuffling” length scale when approaching the elastic and flow regimes? Role of the microstructure ? ELASTIC FLOW ? ? Grain size Analogy with the plasticity of other disordered materials? Length scale dependence of the aging and plasticity of a colloidal polycrystal under cyclic shear
Neda Ghofraniha People - Acknowledgements Ameur Louhichi Luca Cipelletti Elisa Tamborini Julian Oberdisse Laurence Ramos
Data analysis q // q 1 = 0.12 µm -1 51 µm q 2 = 0.19 µm -1 q 3 = 0.24 µm -1 q 4 = 0.39 µm -1 q 5 = 0.78 µm -1 q 6 = 1.16 µm -1 q 7 = 1.58 µm -1 q 8 = 2.2 µm -1 q 9 = 2.83 µm -1 q 10 = 3.72 µm -1 10 µm 51 m 1.65 µm grain size: 10 µm INTENSITY CORRELATION & CARACTERISTIC LENGTH SCALES
Elasticity vs Plasticity ELASTIC SAMPLE (PDMS) PLASTIC SAMPLE (POLYCRYSTAL)
0.007 °C/Min °C/Min Partitioning p= [NP] in GB [NP] inside grains NP =0.05 %, NP = 100 nm Design of a colloidal analog of a metallic alloy NANOPARTICLE PARTIONING
Pluronics F108 PEO-PPO-PEO Design of a colloidal analog of a metallic alloy fcc crystal lattice a = 31.7 nm SANS ~ 30 nm fcc lattice BLOCK-COPOLYMER IN WATER
THERMOSENSITIVITY OF F108 PEO x -PPO y -PEO x temperature ~ 30 nm fcc lattice Design of a colloidal analog of a metallic alloy T Rheology DSC
0.02 °C/Min T °C/Min °C/Min °C/min Fluorescent polystyrene NP NP = 36 nm NP =0.5 % Controlling the microstructure. ROLE OF THE HEATING RATE
0.02 °C/Min °C/Min °C/Min °C/min NP =0.5 % (v/v) = 36 nm Effect of the heating rate on the microstructure
NP 1% v/v 0.5% v/v 0.1% v/v 0.05% v/v T=0.007°C/Min. Analogy to grain refinement in metallic alloys Controlling the microstructure ROLE OF THE NP CONCENTRATION
0.05% v/v 0.5% v/v 1% v/v 0.1% v/v Controlling the microstructure ROLE OF THE NP CONCENTRATION
vs heating ratevs NP content. Controlling the microstructure AVERAGE CRYSTALLITE SIZE
SHEAR CELL LASER L 1a L 1b PDT L 2a L 2b L 3a L 3b M L PDT CCD PC PDM OF BS Z COLLIMATOR Experimental set-up Tamborini & Cipelletti, Rev. Sci. Instr DLS undershear strain GBs dynamics ~ 1/ ~ 1/ INTENSITY CORRELATION q 1 = 0.12 µm -1 - q 10 = 3.72 µm -1