LOFF, the inhomogeneous “faces” of color superconductivity Marco Ruggieri Università degli Studi di Bari Conversano, 16 – 20 Giugno 2005.

Slides:



Advertisements
Similar presentations
An Astrophysical Application of Crystalline Color Superconductivity Roberto Anglani Physics Department - U Bari Istituto Nazionale di Fisica Nucleare,
Advertisements

R. Yoshiike Collaborator: K. Nishiyama, T. Tatsumi (Kyoto University)
The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU)
Zhao Zhang ( Kyoto University ) Vector-vector interaction, Charge neutrality and the number of QCD critical points contents  Introduction to QCD phase.
Chiral symmetry breaking and structure of quark droplets
Masakiyo Kitazawa Osaka University ATHIC2008, Tsukuba, Oct. 14, 2008 “strongly coupled” Quark Matter.
黄梅 Mei Huang Paramagnetic Meissner Effect in the g2SC Phase Mei Huang 黄 梅 Collaborate with I. Shovkovy ``The QCD-phase diagram”, Skopelos, May 29 – June.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Two talks for the price of one: Cooling by angulon annihilation and Asymmetrical fermion superfluids P. Bedaque (Berkeley Lab) G. Rupak, M. Savage, H.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
1 Angular momentum mixing in non-spherical color superconductors Defu Hou Central China Normal University, Wuhan Collaborators: Bo Feng, Hai-cang Ren.
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
2003 International Workshop on Quantum Chromodynamics Theory and Experiment Conversano (Bari, Italy) June Inhomogeneous color superconductivity.
The three flavor LOFF phase of QCD N. D. Ippolito University and INFN, Bari, Italy HISS : Dense Matter in HIC and Astrophysics, Dubna, 2006.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
1 NGB and their parameters  Gradient expansion: parameters of the NGB’s  Masses of the NGB’s  The role of the chemical potential for scalar fields:
July, 2008 Summer School on Dense Matter and HI Dubna 1 Relativistic BCS-BEC Crossover at Quark Level Pengfei Zhuang Physics Department, Tsinghua University,
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Quark matter meets cold atoms 474th International Wilhelm und Else Heraeus Seminar on Strong interactions: from methods to structures, Bad Honnef, Feb.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Thermal phase transitions in realistic dense quark matter
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University.
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Color Superconductivity: Recent developments Qun Wang Department of Modern Physics China University of Science and Technology Quark Matter 2006, Shanghai.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
…1 ● At asymptotic densities and T = 0, the ground state of QCD is the CFL phase (highly symmetric diquark condensate) ● Understanding the interior of.
2003 International Workshop on Quantum Chromodynamics Theory and Experiment Conversano (Bari, Italy) June Inhomogeneous color superconductivity.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Color Superconductivity in High Density QCD
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
NGB and their parameters
Tomohiro Inagaki Hiroshima University
Overview of Finite Density QCD for String Theorists
On Superfluid Properties of Asymmetric Dilute Fermi Systems
International Workshop on Quantum Chromodynamics
The ground state of QCD at finite density and T = 0
Color Superconductivity in dense quark matter
Color Superconductivity in High Density QCD
Color Superconductivity
Color Superconductivity in High Density QCD
The Color Charge & Bag Model
International Workshop on Quantum Chromodynamics
Roberto Casalbuoni Dept. of Physics, University of Florence
Efrain J. Ferrer Paramagnetism in Compact Stars
INFN, Sezione di Catania
Chengfu Mu, Peking University
Aspects of Color Superconductivity in 2-flavor Quark Matter
LOFF, the inhomogeneous “faces” of color superconductivity
Color Superconductivity in High Density QCD
QCD at very high density
A possible approach to the CEP location
(A and B) Fourier transform spectra obtained at different temperatures and excitation fluences in B1g (A, 1.91 eV probing energy) and A1g + B2g (B, 2.45.
Roberto Casalbuoni Dept. of Physics, University of Florence
Edward Shuryak Stony Brook
Induced p-wave superfluidity in asymmetric Fermi gases
Presentation transcript:

LOFF, the inhomogeneous “faces” of color superconductivity Marco Ruggieri Università degli Studi di Bari Conversano, 16 – 20 Giugno 2005

2 High density QCD Hadrons at very high density and low temperature: deconfinement. Degrees of freedom: quarks and gluons. Quarks fill large Fermi surfaces. One gluon exchange is attractive in the color antisymmetric channel. Color Superconductivity

3 Superficie di Fermi BCS color superconductivity Fermi Surface BCS: Pairing with zero total momentum

4 BCS color superconductivity 2 Phases characterized by diquark condensation: Normal Superconductive

5 In nature……… different Fermi momenta of the quarks can be different, because: Weak equilibrium Non-zero masses of the quarks Electrical and color neutrality How can this affect BCS superconductivity ?

6 u d u d Different Fermi momenta It is difficult to form pairs with total zero momentum two flavor From now on I consider only two flavor quark matter

7 Pairs with non-zero total momenum Inhomogeneous gap parameter LOFF phase

8 Cristallography of the LOFF phase One can make the following general ansatz: Usually the wave vectors are choosen along the direction of vertices of regular poliedra Cristallography

9 Interesting cristallographic structures P=6 Body centered cube (B.C.C.) P=8 Face centered cube (F.C.C.)

10 Smearing of the gap parameter Gap equation = Free energy My goal is to see which is the LOFF structure realized in quark matter. I can do this by comparing the free energy of the various structures. How can I compute such a free energy ?

11 (Ruggieri et al ) Comparison of the free energies BCC FCC One wave BCS LOFF

12 LOFF and compact stars ? Mantel + hadron superfluid CFL (if densities are high enough) LOFF, gCFL If If quark matter is present in the core of a could neutron star, then the LOFF phase could be realized there.

13 If If LOFF, how can it contribuite to the thermodynamics ? Gapless fermion dispersion laws Fermions are relevant for the thermodynamical properties. Spatial symmetries are spontaneously broken Phonons LOFF BCS

14 Conlusions and open questions Different Fermi momenta: pairs with non-zero momemtum. Cristallography of the LOFF phase: smearing approximation. LOFF with three flavors. Transport coefficients. Applications to condensed matter.

15 References In this talk I presented results obtained in collaboration with: R. Casalbuoni, M. Ciminale, R. Gatto, M. Mannarelli, G. Nardulli. Thanks to all of them. Thanks also to: V. Laporta, N. Ippolito, John Petrucci and, last but not least, M. La Calamita.