Using Properties of Polyhedra

Slides:



Advertisements
Similar presentations
Volumes. Polyhedrons What is a polyhedron? Circles are not polygons.
Advertisements

Chapter 12: Surface Area and Volume of Solids
POLYHEDRON.
12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.
Chapter 12 Surface Area and Volume. Topics We Will Discuss 3-D Shapes (Solids) Surface Area of solids Volume of Solids.
Geometry Polyhedra. 2 August 16, 2015 Goals Know terminology about solids. Identify solids by type. Use Euler’s Theorem to solve problems.
Chapter 12 Surface Area and Volume. Topics We Will Discuss 3-D Shapes (Solids) Surface Area of solids Volume of Solids.
9-4 Geometry in Three Dimensions  Simple Closed Surfaces  Regular Polyhedra  Cylinders and Cones.
Surface Area and Volume
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area.
Chapter 15: Geometric Solids Brian BarrDan Logan.
 A Polyhedron- (polyhedra or polyhedrons)  Is formed by 4 or more polygons (faces) that intersect only at the edges.  Encloses a region in space. 
Chapter 12 Notes.
Explore Solids Warm Up Lesson Presentation Lesson Quiz.
Surface Area and Volume Chapter 12. Exploring Solids 12.1 California State Standards 8, 9: Solve problems involving the surface area and lateral area.
GEOMETRY Bridge Tips: Be sure to support your sides when you glue them together. Today: Over Problem Solving 12.1 Instruction Practice.
Name the polygon by the number of sides.
EXAMPLE 2 Use Euler’s Theorem in a real-world situation SOLUTION The frame has one face as its foundation, four that make up its walls, and two that make.
5-Minute Check Name the polygon by the number of sides.
Vertex – A point at which two or more edges meet Edge – A line segment at which two faces intersect Face – A flat surface Vertices, Edges, Faces.
3-Dimentional Figures Section 11.1.
Chapter 12 Section 1 Exploring Solids Using Properties of Polyhedra Using Euler’s Theorem Richard Resseguie GOAL 1GOAL 2.
12.1– Explore Solids.
POLYHEDRON.
Polyhedron Platonic Solids Cross Section
12.1 – Explore Solids.
Warm Up Week 6. Section 12.1 Day 1 I will use the properties of polyhedra. Cross section The intersection of a plane slicing through a solid.
11.5 Explore Solids & 11.6 Volume of Prisms and Cylinders
Warm-up Assemble Platonic Solids.
Chapter 12.1 Notes Polyhedron – is a solid that is bounded by polygons, called faces, that enclose a single region of space. Edge – of a polygon is a line.
12.1 & 12.2 – Explore Solids & Surface Area of Prisms and Cones.
DRILL How many sides does dodecagon have?
12.1 Exploring Solids.
Ch 12 and 13 Definitions. 1. polyhedron A solid with all flat surfaces that enclose a single region of space.
Section 12-1 Exploring Solids. Polyhedron Three dimensional closed figure formed by joining three or more polygons at their side. Plural: polyhedra.
Surface Area and Volume
12.1 Exploring Solids.
Space Figures and Nets Section 6-1 Notes and vocabulary available on my home page.
Solid Figures Section 9.1. Goal: Identify and name solid figures.
Unit 9: Solids. A polyhedron is a solid that is bounded by polygons called faces, that enclose a region of space. An edge of a polyhedron is a line segment.
Diamond D’Oveyana & Sylvia
12.1 Exploring Solids Hubarth Geometry. The three-dimensional shapes on this page are examples of solid figures, or solids. When a solid is formed by.
12.1 Exploring Solids Geometry. Defns. for 3-dimensional figures Polyhedron – a solid bounded by polygons that enclose a single region of shape. (no curved.
G.3.J Vocabulary of Three-Dimensional Figures
Name the polygon by the number of sides.
Geometric Solids POLYHEDRONS NON-POLYHEDRONS.
Goal 1: Using Properties of Polyhedra Goal 2: Using Euler’s Theorem
Polyhedra and Prisms.
Chapter 11 Extending Geometry
Surface Area and Volume
Section 9.4 Volume and Surface Area
What do they all have in common?
Measurement of Solids & Figures
Ch 12 Surface Area and Volume of Solids
Section 9.4 Volume and Surface Area
11.4 Three-Dimensional Figures
11.4 Three Dimensional Figures
12.1 Exploring Solids.
12-1 Properties of Polyhedra
10-1 Vocabulary Face Edge Vertex Prism Cylinder Pyramid Cone Cube Net
Volumes.
Surface Area and Volume
11.5 Explore Solids Mrs. vazquez Geometry.
Concept 52 3-D Shapes.
Geometry Chapter : Exploring Solids.
14 Chapter Area, Pythagorean Theorem, and Volume
11.4 Exploring Solids Geometry How many geometric solid can you name?
11.4 Three-Dimensional Figures
Presentation transcript:

Using Properties of Polyhedra A polyhedron is a solid that is bounded by polygons, called faces, that enclose a single region of space. An edge of a polyhedron is a line segment formed by the intersection of two faces. A vertex of a polyhedron is a point where three or more edges meet. The plural of polyhedron is polyhedra, or polyhedrons.

Identifying Polyhedra Decide whether the solid is a polyhedron. If so, count the number of faces, vertices, and edges of the polyhedron. SOLUTION This is a polyhedron. It has 5 faces, 6 vertices, and 9 edges.

Identifying Polyhedra Decide whether the solid is a polyhedron. If so, count the number of faces, vertices, and edges of the polyhedron. SOLUTION This is a polyhedron. It has 5 faces, 6 vertices, and 9 edges. This is not a polyhedron. Some of its faces are not polygons.

Identifying Polyhedra Decide whether the solid is a polyhedron. If so, count the number of faces, vertices, and edges of the polyhedron. SOLUTION This is a polyhedron. It has 5 faces, 6 vertices, and 9 edges. This is not a polyhedron. Some of its faces are not polygons. This is a polyhedron. It has 7 faces, 7 vertices, and 12 edges.

Using Properties of Polyhedra CONCEPT SUMMARY TYPES OF SOLIDS Of the five solids below, the prism and the pyramid are polyhedra. The cone, cylinder, and sphere are not polyhedra. prism pyramid cone cylinder sphere

Using Properties of Polyhedra A polyhedron is regular if all of its faces are congruent regular polygons. A polyhedron is convex if any two points on its surface can be connected by a segment that lies entirely inside or on the polyhedron. If this segment goes outside the polyhedron, then the polyhedron is nonconvex, or concave. regular, convex nonregular, nonconvex

Classifying Polyhedra Is the octahedron convex? Is it regular? convex, regular

Classifying Polyhedra Is the octahedron convex? Is it regular? convex, regular convex, nonregular

Classifying Polyhedra Is the octahedron convex? Is it regular? convex, regular convex, nonregular nonconvex, nonregular

Using Properties of Polyhedra Imagine a plane slicing through a solid. The intersection of the plane and the solid is called a cross section. For instance, the diagram shows that the intersection of a plane and a sphere is a circle.

Describing Cross Sections Describe the shape formed by the intersection of the plane and the cube. SOLUTION This cross section is a square.

Describing Cross Sections Describe the shape formed by the intersection of the plane and the cube. SOLUTION This cross section is a square. This cross section is a pentagon.

Describing Cross Sections Describe the shape formed by the intersection of the plane and the cube. SOLUTION This cross section is a square. This cross section is a pentagon. This cross section is a triangle.

Describing Cross Sections Describe the shape formed by the intersection of the plane and the cube. SOLUTION This cross section is a square. This cross section is a pentagon. This cross section is a triangle. The square, pentagon, and triangle cross sections were just described above. Some other cross sections are the rectangle, trapezoid, and hexagon.

Using Euler’s Theorem There are five regular polyhedra, called Platonic solids, after the Greek mathematician and philosopher Plato. The Platonic solids are a regular tetrahedron (4 faces), a cube (6 faces), a regular octahedron (8 faces), a regular dodecahedron (12 faces), and a regular icosahedron (20 faces). Regular tetrahedron 4 faces, 4 vertices, 6 edges Cube 6 faces, 8 vertices, 12 edges Regular octahedron 8 faces, 6 vertices, 12 edges Regular dodecahedron 12 faces, 20 vertices, 30 edges Regular icosahedron 20 faces, 12 vertices, 30 edges

Theorem 12.1 Euler’s Theorem Using Euler’s Theorem Notice that the sum of the number of faces and vertices is two more than the number of edges in the solids in the last slide. This result was proved by the Swiss mathematician Leonhard Euler (1707 - 1783). THEOREM Theorem 12.1 Euler’s Theorem The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula F + V = E + 2.

Use Euler’s Theorem to find the number of vertices. Using Euler’s Theorem The solid has 14 faces: 8 triangles and 6 octagons. How many vertices does the solid have? SOLUTION On their own, 8 triangles and 6 octagons have 8 (3) + 6 (8), or 72 edges. In the solid, each side is shared by exactly two polygons. So, the number of edges is one half of 72, or 36. Use Euler’s Theorem to find the number of vertices. F + V = E + 2 Write Euler’s Theorem. 14 + V = 36 + 2 Substitute. V = 24 Solve for V. The solid has 24 vertices.

Finding the Number of Edges CHEMISTRY In molecules of sodium chloride, commonly known as table salt, chloride atoms are arranged like the vertices of regular octahedrons. In the crystal structure, the molecules share edges. How many sodium chloride molecules share the edges of one sodium chloride molecule? To find the number of molecules that share edges with a given molecule, you need to know the number of edges of the molecule. SOLUTION You know that the molecules are shaped like regular octahedrons. You can use Euler’s Theorem to find the number of edges, as shown below. So, they each have 8 faces and 6 vertices. F + V = E + 2 Write Euler’s Theorem. 8 + 6 = E + 2 Substitute. 12 = E Simplify. So, 12 other molecules share the edges of the given molecule.

Finding the Number of Vertices SPORTS A soccer ball resembles a polyhedron with 32 faces; 20 are regular hexagons and 12 are regular pentagons. How many vertices does this polyhedron have? SOLUTION Each of the 20 hexagons has 6 sides and each of the 12 pentagons has 5 sides. Each edge of the soccer ball is shared by two polygons. Thus, the total number of edges is as follows: 1 2 E = (6 • 20 + 5 • 12) Expression for number of edges 1 2 = (180) Simplify inside parentheses. = 90 Multiply.

Finding the Number of Vertices SPORTS A soccer ball resembles a polyhedron with 32 faces; 20 are regular hexagons and 12 are regular pentagons. How many vertices does this polyhedron have? SOLUTION Knowing the number of edges, 90, and the number of faces, 32, you can apply Euler’s Theorem to determine the number of vertices. F + V = E + 2 Write Euler’s Theorem. 32 + V = 90 + 2 Substitute. V = 60 Simplify. So, the polyhedron has 60 vertices.