Guerino Mazzola U & ETH Zürich Internet Institute for Music Science architecture du livre „The Topos of Music“

Slides:



Advertisements
Similar presentations
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Signes, pointeurs et schémas de concepts pour.
Advertisements

XXIII International FIG Congress & German INTER GEO October Munich, Germany.
Ethical Hacking Introduction. EC-Council Introductions Name Company Affiliation Title / Function Job Responsibility System security related experience.
Neofunctionalism Ernst Haas. Assumptions (i) Regional basis (ii) Central institutions crucial (iii) Advanced industrial societies (iv) International/domestic.
Neofunctionalism Ernst Haas Initial critical encounter Schmitter & Lindberg Obsolescent?
UNM CTSC Mentored Career Development Scholars Program 6-Month Progress Report Template (Years 3+) Name Title Department or College.
Hamlet /Media Outline. I. Thesis Statement: (Director)s To be or not to be and (director)s Alas poor Yorick best exemplify William Shakespeares original.
Reagan/Clinton Compare/Contrast Essay. I. Reagan and Clinton both argue... but... A.Reagan argues B.Clinton argues.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Penser la musique dans la logique fonctorielle.
1 SEE 1023 Circuit Theory Parallel RLC Resonant Circuit.
PART 2 Fuzzy sets vs crisp sets
1 Series RLC Resonant Circuit V s = 10 Vrms, R = 10 , L = 100 mH, C = 10  F VsVs R L C I + V R - + V L - +VC-+VC-   (varied) Assignment #1: Part.
Minimal Neural Networks Support vector machines and Bayesian learning for neural networks Peter Andras
PrasadAbstraction1 VEDIC MATHEMATICS : Abstraction T. K. Prasad
Mathematics Shape and Space: Polygon Angles Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund
Government Promotion Schemes. Central Government Incubation centres – 100 with a budget of Rs lakhs per BI Host Institutions i) Indian Institutes.
Roman Numerals. Roman Numerals - Past and Present  Romans used them for trading and commerce.  When Romans learned to write they needed a way to write.
1 Resonant Circuits SEE 1023 Circuit Theory Frequency Response.
RESEARCH REPORT PREPARATION AND PRESENTATION. 2 RESEARCH REPORT A research report is: – a written document or oral presentation based on a written document.
November 209-April 2010 “EU public administration and implementation of EU regional policy and rural development in V- 4 countries” Project No /IVF/2009.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Models of Tonal Modulation and.
Roman Numerals Learning objective: To learn how to count using Roman numerals.
RUBATO composer Seminar Guerino Mazzola U Minnesota & Zürich Guerino.
The History of the Olympic Games by. I - Athens April 6-15, 1896.
INTERNATIONAL CLASSIFICATION OF DISEASES ASSOC. PROF. D-R PETKO SALCHEV PhD.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Music Theory — Status Quo 2000.
DATA REPRESENTATION, DATA STRUCTURES AND DATA MANIPULATION TOPIC 4 CONTENT: 4.1. Number systems 4.2. Floating point binary 4.3. Normalization of floating.
Mathematics Shape and Space: Measurement (Volume)
UNM CTSC Mentored Career Development Scholar’s Program 6-Month Progress Report Template (Years 1-3) Name Title Department or College.
The Perfect Economic Storm. Figure I AVERAGE WEEKLY EARNINGS GROWTH BY OCCUPATION,
Big Business and Organized Labor Chapter 20. I. The Rise of Big Business.
Guerino Mazzola U & ETH Zürich Guerino Mazzola U & ETH Zürich
Harmonizing a Melody AP MUSIC THEORY Remember… Utilize Harmonies Harmonic Progression Cadences Counterpoint There is more than one correct answer!
Musical Gestures and their Diagrammatic Logic Musical Gestures and their Diagrammatic Logic Guerino Mazzola U & ETH Zürich U & ETH Zürich
Roman Numeral Multiplication Quiz
Guerino Mazzola U & ETH Zürich U & ETH Zürich Global Networks in Computer Science? Global Networks in Computer.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Performance and Interpretation Performance.
The Modus Operandi of the CLCSHarald Brekke, member of the CLCS 1 The Modus Operandi of the Commission on the Limits of the Continental Shelf Harald Brekke.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Les mathématiques de l‘interprétation musicale:
Presentation on Number System
What is History? Presentation #3 Mr. Bridgeo. How do we measure or retrace the evolution of societies? The unit of time that historians use to measure.
Guerino Mazzola Roger Fischlin, Stefan Göller: U Zürich Claudio Vaccani, Sylvan Saxer: ETH Zürich The Internet.
CHEMISTRY 102 TENTATIVE SCHEDULE FOR Fall WEEK I (Aug 24 – Aug 28) LAB: Intro to Lab, Lab Check-In, Angel Introduction M: Introduction to course.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Towards „Grand Unification“ Of Musiacl Composition,
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Manifolds and Stemmata in Musical Time.
Guerino Mazzola (Spring 2016 © ): Performance Theory III EXPRESSIVE THEORY III.7 (Mo Mar 7) Analytical Expression III.
希臘字源與閱讀 (A) 課程名稱希臘字源與閱讀 (A) 課程編碼 C0D52701 系所代碼 / 名稱 0C / 英語系 開課班級二技英語四甲 四技英語四甲 四技英語四乙... 開課教師石耀西 學分 2.0 時數 2 必選修選修 南台科技大學 課程資訊.
Guerino Mazzola (Spring 2016 © ): Performance Theory IV RUBATO IV.2 (Wed Apr 06) Inverse Performance Theory.
Guerino Mazzola (Spring 2016 © ): Performance Theory IV RUBATO IV.1 (Fr Mar 11) Stemma Theory and Shaping Operators
Amendments Review FINAL.
Театр в России в XVIII -1пол.XIX вв. В начале 18 века, в Москве, на Красной площади впервые открылся публичный театр. В театре играла иностранная труппа.
Amendments Review.
Chemistry II Objectives Unit II - Chapter 2-4
de l‘interprétation musicale: Champs vectoriels d‘interprétation
IV EXPERIMENTS IV.3 (Thu March 29) Modeling tonal modulation.
The Modus Operandi of the Commission on the Limits of the Continental Shelf Harald Brekke CLCS Member.
V EXPERIMENTS V.1 (Thu Apr 12) Synthesis—a computer-aided jazz composition—I: principles.
27 Amendments XV (15) rights not to be denied because of race XVI (16)
Flow diagrams (i) (ii) (iii) x – Example
3. Old Brain I III II V IV VII VI VIII IX X XII XI
State of Florida “Preferred” Lease Approval Process
Terry’s Code of Ethics for Bus Service Contractors
Roman Numerals Adding value to letters I, V, X, L, C, D, M 11/30/2018.
V EXPERIMENTS V.2 (Thu Apr 19) Synthesis II: Symmetries.
III Symbolic Reality III.2 (Mo Nov 05) Denotators I—definition of a universal concept space and notations.
Index Notation Sunday, 24 February 2019.
УВС АЙМГИЙН НИЙГЭМ ЭДИЙН
Roman Numerals.
Roman numerals -Rules for writing.
Roman Numerals.
Presentation transcript:

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science architecture du livre „The Topos of Music“ architecture du livre „The Topos of Music“

The Topos of Music Geometric Logic of Concepts, Theory, and Performance avec la collaboration de Moreno Andreatta, Gérard Assayag, Jan Beran, Chantal Buteau, Roberto Ferretti, Anja Fleischer, Harald Fripertinger, Jörg Garbers, Stefan Göller, Werner Hemmert, Mariana Montiel, Andreas Nestke, Thomas Noll, Joachim Stange-Elbe, Oliver Zahorka

Appendix:MathematicalBasicsGlossary Introduction and Orientation Local Theory Global Theory Harmony Counterpoint Operationalization of Poiesis presto ® String Quartet Theory Geometrie der Töne 1990

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: MathematicalBasics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM The Topos of Music 2002 The Topos of Music 2002

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 1. What is Music About? 2. Topography 3. Musical Ontology 4. Models and Experiments in Musicology

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 5. Navigation 6. Denotators 6.1 Universal Concept Formats 6.2 Forms 6.3 Coordinates and Pointers 6.4 Anchoring Forms in Modules 6.5 Regular and Circular Forms 6.6 Regular Denotators 6.7 Circular Denotators 6.8 Ordering on Denotators 6.9 Concept Surgery and Denotator Semantics

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 7. Local Compositions 8. Symmetries and Morphisms 9. Yoneda Perspectives 10. Paradigmatic Classification 11. Orbits 12. Topological Specialization

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 13. Global Compositions 14. Global Perspectives 15. Global Classification 16. Classifying Interpretations 17. Aesthetics and Classification 18. Predicates 19. Topoi of Music 20. Visualization Principles

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 21. Metrics and Rhythmics 22. Motif Gestalts

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 23. Critical Preliminaries 24. Harmonic Topology 25. Harmonic Semantics 26. Cadence 27. Modulation 28. Applications

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 29. Melodic Variation by Arrows 30. Interval Dichotomies as an Expression of Contrast 31. Modeling Counterpoint by Local Symmetries

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 32. Local and Global Performance Transformations 33. Performance Fields 34. Initial Sets and Initial Performances 35. Hierarchies and Performance Scores

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 36. Taxonomy of Expressive Performance 37. Performance Grammars 38. Stemma Theory 39. Operator Theory

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 40. Architecture 41. The RUBETTE ® Family 42. Performance Experiments

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 43. Analysis of Analysis

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 44. Principles of Music Critique 45. Critical Fibers 46. Grammatical Varieties

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 47. Unfolding Geometry and Logic in Time 48. Local and Global Strategies in Composition 49. The Paradigmatic Discourse on presto ® 50. Case Study I: „SYNTHESIS“ by Guerino Mazzola 51. The Syntagmatic Discourse on Open Music 52. Case Study II: „ Composition“ by Compositeur XY

I. Introduction and Orientation II. Navigation on Concept Spaces III. Local Theory IV. Global Theory V. Topologies for Rhythm and Motives VI. Harmony VII. Counterpoint VIII. Structure Theory of Performance IX. Expressive Semantics X. RUBATO ® XI. Statistics of Analysis and Performance XII. Inverse Performance Theory XIII.Operationalization of Poiesis XIV. String Quartet Theory XV. Appendix: Sound XVI. Appendix: Mathematical Basics XVII. Appendix: Tables XVIII. Appendix: References XIX. Symbols and Notations XX. Glossary XXI. Index CD-ROM 53. Historic and Theoretical Prerequisites 54. Estimation of Resolution Parameters

I. Introduction and Orientation 1. What is Music About? 2. Topography 3. Musical Ontology 4. Models and Experiments in Musicology

6. Denotators 6.1 Universal Concept Formats 6.2 Forms 6.3 Coordinates and Pointers 6.4 Anchoring Forms in Modules 6.5 Regular and Circular Forms 6.6 Regular Denotators 6.7 Circular Denotators 6.8 Ordering on Denotators 6.9 Concept Surgery and Denotator Semantics

7. LocalCompositions 8. Symmetries and Morphisms 9. Yoneda Perspectives 10. Paradigmatic Classification 11. Orbits 12. Topological Specialization III. Local Theory

IV. Global Theory 13. Global Compositions 14. Global Perspectives 15. Global Classification 16. Classifying Interpretations 17. Aesthetics and Classification 18. Predicates 19. Topoi of Music 20. Visualization Principles

V. Topologies for Rhythm and Motives 21. Metrics and Rhythmics 22. Motif Gestalts

VI. Harmony 23. Critical Preliminaries 24. Harmonic Topology 25. Harmonic Semantics 26. Cadence 27. Modulation 28. Applications

VII. Counterpoint 29. Melodic Variation by Arrows 30. Interval Dichotomies as an Expression of Contrast 31. Modeling Counterpoint by Local Symmetries

VIII. Structure Theory of Performance 32. Local and Global Performance Transformations 33. Performance Fields 34. Initial Sets and Initial Performances 35. Hierarchies and Performance Scores

IX. Expressive Semantics 36. Taxonomy of Expressive Performance 37. Performance Grammars 38. Stemma Theory 39. Operator Theory

X. RUBATO ® 40. Architecture 41. The RUBETTE ® Family 42. Performance Experiments

43. Analysis of Analysis XI. Statistics of Analysis and Performance

XII. Inverse Performance Theory 44. Principles of Music Critique 45. Critical Fibers 46. Grammatical Varieties

47. Unfolding Geometry and Logic in Time 48. Local and Global Strategies in Composition 49. The Paradigmatic Discourse on presto ® 50. Case Study I: „SYNTHESIS“ by Guerino Mazzola 51. The Syntagmatic Discourse on Open Music 52. Case Study II: „ Composition“ by Compositeur XY XIII.Operationalization of Poiesis

XIV. String Quartet Theory 53. Historic and Theoretical Prerequisites 54. Estimation of Resolution Parameters