Circuit Complexity and Derandomization Tokyo Institute of Technology Akinori Kawachi.

Slides:



Advertisements
Similar presentations
Unconditional Weak derandomization of weak algorithms Explicit versions of Yao s lemma Ronen Shaltiel, University of Haifa :
Advertisements

Low-End Uniform Hardness vs. Randomness Tradeoffs for Arthur-Merlin Games. Ronen Shaltiel, University of Haifa Chris Umans, Caltech.
Linear-Degree Extractors and the Inapproximability of Max Clique and Chromatic Number David Zuckerman University of Texas at Austin.
Average-case Complexity Luca Trevisan UC Berkeley.
Pseudorandomness from Shrinkage David Zuckerman University of Texas at Austin Joint with Russell Impagliazzo and Raghu Meka.
Are lower bounds hard to prove? Michal Koucký Institute of Mathematics, Prague.
Derandomization & Cryptography Boaz Barak, Weizmann Shien Jin Ong, MIT Salil Vadhan, Harvard.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Talk for Topics course. Pseudo-Random Generators pseudo-random bits PRG seed Use a short “ seed ” of very few truly random bits to generate a long string.
Uniform Hardness vs. Randomness Tradeoffs for Arthur-Merlin Games. Danny Gutfreund, Hebrew U. Ronen Shaltiel, Weizmann Inst. Amnon Ta-Shma, Tel-Aviv U.
1 Introduction to Complexity Classes Joan Feigenbaum Jan 18, 2007.
CS151 Complexity Theory Lecture 17 May 27, CS151 Lecture 172 Outline elements of the proof of the PCP Theorem counting problems –#P and its relation.
CS151 Complexity Theory Lecture 8 April 22, 2004.
Pseudorandomness for Approximate Counting and Sampling Ronen Shaltiel University of Haifa Chris Umans Caltech.
A survey on derandomizing BPP and AM Danny Gutfreund, Hebrew U. Ronen Shaltiel, Weizmann Inst. Amnon Ta-Shma, Tel-Aviv U.
Using Nondeterminism to Amplify Hardness Emanuele Viola Joint work with: Alex Healy and Salil Vadhan Harvard University.
Probabilistic Algorithms Michael Sipser Presented by: Brian Lawnichak.
Time vs Randomness a GITCS presentation February 13, 2012.
Non-Uniform ACC Circuit Lower Bounds Ryan Williams IBM Almaden TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
CS151 Complexity Theory Lecture 5 April 13, 2015.
CS151 Complexity Theory Lecture 7 April 20, 2004.
Some Thoughts regarding Unconditional Derandomization Oded Goldreich Weizmann Institute of Science RANDOM 2010.
CS151 Complexity Theory Lecture 5 April 13, 2004.
Derandomization: New Results and Applications Emanuele Viola Harvard University March 2006.
Arithmetic Hardness vs. Randomness Valentine Kabanets SFU.
CS151 Complexity Theory Lecture 7 April 20, 2015.
CS151 Complexity Theory Lecture 8 April 22, 2015.
Complexity ©D. Moshkovitz 1 And Randomized Computations The Polynomial Hierarchy.
The Power of Randomness in Computation 呂及人中研院資訊所.
In a World of BPP=P Oded Goldreich Weizmann Institute of Science.
CS151 Complexity Theory Lecture 9 April 27, 2004.
Randomness – A computational complexity view Avi Wigderson Institute for Advanced Study.
RSA Parameter Generation Bob needs to: - find 2 large primes p,q - find e s.t. gcd(e, Á (pq))=1 Good news: - primes are fairly common: there are about.
Pseudorandomness Emanuele Viola Columbia University April 2008.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
Pseudorandom Generators and Typically-Correct Derandomization Jeff Kinne, Dieter van Melkebeek University of Wisconsin-Madison Ronen Shaltiel University.
XOR lemmas & Direct Product thms - Many proofs Avi Wigderson IAS, Princeton ’82 Yao ’87 Levin ‘89 Goldreich-Levin ’95 Impagliazzo ‘95 Goldreich-Nisan-Wigderson.
Using Nondeterminism to Amplify Hardness Emanuele Viola Joint work with: Alex Healy and Salil Vadhan Harvard University.
On approximate majority and probabilistic time Emanuele Viola Institute for advanced study Work done during Ph.D. at Harvard University June 2007.
Amplifying lower bounds by means of self- reducibility Eric Allender Michal Koucký Rutgers University Academy of Sciences Czech Republic Czech Republic.
Eric Allender Rutgers University Circuit Complexity meets the Theory of Randomness SUNY Buffalo, November 11, 2010.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
Fall 2013 CMU CS Computational Complexity Lectures 8-9 Randomness, communication, complexity of unique solutions These slides are mostly a resequencing.
My Favorite Ten Complexity Theorems of the Past Decade II Lance Fortnow University of Chicago.
Umans Complexity Theory Lectures Lecture 17: Natural Proofs.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Donghyun (David) Kim Department of Mathematics and Computer Science North Carolina Central University 1 Chapter 7 Time Complexity Some slides are in courtesy.
Pseudorandom Bits for Constant-Depth Circuits with Few Arbitrary Symmetric Gates Emanuele Viola Harvard University June 2005.
Hardness amplification proofs require majority Emanuele Viola Columbia University Work also done at Harvard and IAS Joint work with Ronen Shaltiel University.
Lower Bounds Emanuele Viola Columbia University February 2008.
Pseudo-random generators Talk for Amnon ’ s seminar.
Comparing Notions of Full Derandomization Lance Fortnow NEC Research Institute With thanks to Dieter van Melkebeek.
Eric Allender Rutgers University Curiouser and Curiouser: The Link between Incompressibility and Complexity CiE Special Session, June 19, 2012.
Almost SL=L, and Near-Perfect Derandomization Oded Goldreich The Weizmann Institute Avi Wigderson IAS, Princeton Hebrew University.
Pseudorandomness: New Results and Applications Emanuele Viola IAS April 2007.
Umans Complexity Theory Lectures Lecture 9b: Pseudo-Random Generators (PRGs) for BPP: - Hardness vs. randomness - Nisan-Wigderson (NW) Pseudo- Random Generator.
Pseudo-randomness. Randomized complexity classes model: probabilistic Turing Machine –deterministic TM with additional read-only tape containing “coin.
Complexity Theory and Explicit Constructions of Ramsey Graphs Rahul Santhanam University of Edinburgh.
Derandomization & Cryptography
Circuit Lower Bounds A combinatorial approach to P vs NP
Pseudodeterministic Constructions in Subexponential Time
Constructing hard functions from learning algorithms
Pseudorandomness when the odds are against you
Hardness Magnification
Perspective on Lower Bounds: Diagonalization
My Favorite Ten Complexity Theorems of the Past Decade II
Pseudo-derandomizing learning and approximation
Emanuele Viola Harvard University June 2005
On Derandomizing Algorithms that Err Extremely Rarely
Emanuele Viola Harvard University October 2005
Presentation transcript:

Circuit Complexity and Derandomization Tokyo Institute of Technology Akinori Kawachi

Layout Randomized vs Determinsitic Algorithms – Primality Test General Framework for Derandomization – Circuit Complexity  Derandomization Circuits – Circuit Complexity and NP vs. P Necessity of Circuit Complexity for Derandomization Summary

Deterministic v.s. Randomized Algorithms for (Decision) Problems Randomness is useful for real-world computation! Decision problem: PRIME “No” otherwise Elementary Det. algorithm: O(2 n/2 ) time [Eratosthenes, B.C. 2c] Rand. algorithm: O(n 3 ) time w/ succ. prob. 99% [Miller 1976, Rabin 1980] Exponential-time speed-up! n = input length

Deterministic v.s. Randomized Algorithms for (Decision) Problems How much randomness make computation strong? Gödel Prize Det. algorithm: O(n 12 ) time [Agrawal, Kayal & Saxena 2004 Gödel Prize] Rand. algorithm: O(n 3 ) time w/ succ. prob. 99% [Miller 1976, Rabin 1980] “No” otherwise Polynomial-time slow-down Decision problem: PRIME

Derandomization Conjecture BPP = P NO Randomization yields NO exponential speed-up! derandomization Always poly-time derandomization possible? Conjecture det. P = {problem: poly-time det. TM computes} prob. BPP = {problem: poly-time prob. TM computes w/ bounded errors w/ bounded errors}

Class BPP BPP Class BPP (Bounded-error Prob. Poly-time) L ∈ BPP x∊Lx∊L x∉Lx∉L Def Pr r [A(x,r) = Yes] > 2/3 r is uniform over {0,1} m m = |r| = poly(|x|) A( ・, ・ ): poly-time det. TM Pr r [A(x,r) = No] > 2/3

Nondeterministic Version AM = NP Conjecture AM Class AM (Arthur-Merlin Games) L ∈ AM x∊Lx∊L x∉Lx∉L Def |r|,|w| = poly(|x|) A( ・, ・, ・ ): poly-time det. TM

Hardness vs. Randomness Trade-offs [Yao ’82, Blum & Micali ’84] Hard problem exists Pseudo-Random Generator  Good Pseudo-Random Generator (PRG) exists. Simulate randomized algorithms det.ly with PRG! Theorem [Impagliazzo & Wigderson 1998] BPP = P (L is computed in prob. poly-time w/ bounded errors  L is computed in det. poly-time) Similar theorem holds in nondet. version (AM=NP) [Klivans & van Melkebeek 2001]

Circuit x3x3 ∧ x1x1 x2x2 0 ¬ ∨∧ ∧ ∨ Gate set = { ∧, ∨, ¬, 0, 1}

Circuit 0 ∧ 11 ¬ ∨∧ ∧ ∨ 1 ∧ 1 = ¬ 0 = 1 1 ∧ 0 = 0 0 ∨ 1 = 1 0 ∧ 1 = ∨ 0 = 1 1 Input = (1,1,0) 0 Size = 7 Depth = 5

Circuit Complexity Size of circuits is measure for computational resource! Circuit complexity of L := min { size of circuit family computing L } s(n)-size circuit family {C n :{0,1} n →{0,1}} n computes L Definition Def &

Computational Power of Circuits Circuit complexity of any problem = O(2 n /n) Theorem [Lupanov 1970] any (even non-recursive) problem can be computed by some O(2 n /n)-size circuit family. Theorem [Fisher & Pippenger 1979] Poly-time TM can be simulated by poly-size circuit family. SIZE(poly) = {problem: poly-size circuit family can compute}

NP vs. P and Circuits NP ≠ P Conjecture Some NP problem cannot be computed by any poly-time TM. NP ⊄ SIZE(poly) Conjecture Some NP problem has superpoly circuit complexity. Note: NP ⊄ SIZE(poly)  NP ≠ P Proving super-poly circuit complexity in NP solves NP vs. P!

NEXP ⊄ SIZE(poly) MA-EXP ⊄ SIZE(poly) Current Status Theorem (Buhrman, Fortnow, & Thierauf 1998) NEXP ⊄ ACC 0 (poly) Theorem (Williams 2011) Randomized version of NEXP Const-depth poly-size w/ Modulo gates Grand Challenge Cf. H-R tradeoff for BPP=P requires at least EXP ⊄ SIZE(2.1n )!

Hardness vs. Randomness Trade-offs [Yao ’82, Blum & Micali ’84] Hard problem exists Pseudo-Random Generator  Good Pseudo-Random Generator (PRG) exists. Simulate randomized algorithms det.ly with PRG! Theorem [Impagliazzo & Wigderson 1998] BPP = P (L is computed in prob. poly-time w/ bounded errors  L is computed in det. poly-time)

Proof Sketch 1.Construct PRG from hard H. 2.Simulate rand. algo. w/ p-random bits.

Proof Sketch 1.Construct PRG from hard H. Goal: Construct G H : {0,1} O(log m) → {0,1} m Pseudo-random! truly random! # possible s = 2 O(log m) = poly(m) # possible r = 2 m Point For every poly-size circuit C,

Proof Sketch 2.Simulate rand. algo. w/ p-random bits. Goal: Det.ly simulate rand. algo. by G H L ∈ BPP x∊Lx∊L x∉Lx∉L Def Pr r [A(x,r) = Yes] > 2/3 |r| = poly(|x|) A( ・, ・ ): poly-time det. TM Pr r [A(x,r) = No] > 2/3

Proof Sketch 2.Simulate rand. algo. w/ p-random bits. Goal: Det.ly simulate rand. algo. by G H Trivial Simulation A(x,00…00) = Yes A(x,00…01) = No … A(x,11…10) = Yes A(x,11…11) = Yes x∊Lx∊L x∉Lx∉L Require O(2 m )=O(2 poly(n) ) time…

Proof Sketch 2.Simulate rand. algo. w/ p-random bits. Goal: Det.ly simulate rand. algo. by G H Simulation w/ G H A(x,G H (0…0)) = No … A(x,G H (1…1)) = Yes x∊Lx∊L x∉Lx∉L Require 2 O(log m) = poly(n) time! A(x, ・ ) = circuit C

Is Circuit Complexity Essential? Proving “some problem is really hard” is HARD! (e.g. NP≠P) ultimate goal – It’s the ultimate goal in complexity theory… Can avoid “proving hardness” for derandomization? NO! Derandomization implies proving hardness!! BPP=P  Some problem is hard. Theorem [Kabanets & Impagliazzo ‘03] Theorem [Gutfreund & Kawachi ‘10, Aaronson, Aydinlioglu, Buhrman, Hitchcock, & van Melkebeek ‘11] Theorem [Gutfreund & Kawachi ‘10, Aaronson, Aydinlioglu, Buhrman, Hitchcock, & van Melkebeek ‘11]

Theorem [Kabanets & Impagliazzo ‘03] Resolving “arithmetic-circuit version of NP vs. P“ Theorem [Gutfreund & Kawachi ‘10, Aaronson, Aydinlioglu, Buhrman, Hitchcock, & van Melkebeek ‘11] Theorem [Gutfreund & Kawachi ‘10, Aaronson, Aydinlioglu, Buhrman, Hitchcock, & van Melkebeek ‘11]

Summary Proving circuit complexity  Derandomization – through Pseudo-Random Generator – BPP = P, AM = NP, and more… Derandomization  Proving circuit complexity