Preheating after N-flation Shinsuke Kawai (Helsinki Institute of Physics, University of Helsinki) PRD77(2008)123507 [arXiv:0803:0321] with D. Battefeld.

Slides:



Advertisements
Similar presentations
Brane-World Inflation
Advertisements

Gradient expansion approach to multi-field inflation Dept. of Physics, Waseda University Yuichi Takamizu 29 th JGRG21 Collaborators: S.Mukohyama.
The Cosmological Slingshot Scenario A Stringy Proposal for Early Time Cosmology: Germani, NEG, Kehagias, hep-th/ Germani, NEG, Kehagias, arXiv:
Warm inflation in small field models: a stringy realisation Juan Carlos Bueno Sánchez Lancaster University Work in progress with: M. Bastero-Gil (University.
Temporal enhancement of super-horizon scale curvature perturbations from decays of two curvatons and its cosmological implications. Teruaki Suyama (Research.
Cosmology with Warped Flux Compactification
Waves and Bubbles The Detailed Structure of Preheating Gary Felder.
Cosmological Structure Formation A Short Course
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
Coupled Dark Energy and Dark Matter from dilatation symmetry.
New Inflation Amy Bender 05/03/2006. Inflation Basics Perturbations from quantum fluctuations of scalar field Fluctuations are: –Gaussian –Scale Invariant.
After inflation: preheating and non-gaussianities Kari Enqvist University of Helsinki Bielefeld
John ELLIS, King’s College London Planck-Compatible Inflationary Models.
Non-minimal inflation and SUSY GUTs Nobuchika Okada University of Alabama International Workshop on Grand Unification Yukawa Institute of Theoretical Physics.
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
1 Multi-field Open Inflation & Instanton YITP, Kyoto University Kazuyuki Sugimura (Collaborator : D. Yamauchi and M. Sasaki)
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
Emergent Universe Scenario
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
THE LARGE SCALE CMB CUT-OFF AND THE TENSOR-TO-SCALAR RATIO Gavin Nicholson Imperial College London with Carlo Contaldi Imperial College London (astro-ph/ )
Fading Gravity and Self-Inflation Justin Khoury Justin Khoury (Perimeter Institute) hep-th/0610???
Portsmouth. Models of inflation and primordial perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth Cosmo – 02Chicago,
Thursday, 13 th of September of 2012 Strong scale dependent bispectrum in the Starobinsky model of inflation Frederico Arroja 이화여자대학교 EWHA WOMANS UNIVERSITY.
1 Circular Polarization of Gravitational Waves in String Cosmology MIAMI, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Dark Energy & High-Energy Physics Jérôme Martin Institut d’Astrophysique de Paris.
1 Parametric resonance with Multi-frequencies in preheating José Pedro Mimoso University of Lisboa Collaboration with: Ana Nunes Tiago Charters ERE08 –Salamanca:
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Inflation: a Status Report Jérôme Martin Institut d’Astrophysique de Paris (IAP) Annecy, LAPTH, February 3, 2011.
Stabilizing moduli with flux in brane gas cosmology Jin Young Kim (Kunsan National Univ.) CosPA 2009, Melbourne Based on arXiv: [hep-th]; PRD 78,
A nonequilibrium renormalization group approach to turbulent reheating A case study in nonlinear nonequilibrium quantum field theory J. Zanella, EC Part.
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Open Inflation in the Landscape Misao Sasaki (YITP, Kyoto University) in collaboration with Daisuke Yamauchi (now at ICRR, U Tokyo) and Andrei Linde, Atsushi.
PROBABILITIES IN THE LANDSCAPE Alex Vilenkin Tufts Institute of Cosmology.
Tunneling cosmological state and origin of SM Higgs inflation A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow based on works with A.Yu.Kamenshchik.
1. Cosmic string scenario was the first mechanism to provide the origin of density fluctuations that seeded cosmic large-scale structures from fundamental.
Gravitational Modulated Reheating
 N formalism for Superhorizon Perturbations and its Nonlinear Extension Misao Sasaki YITP, Kyoto University Based on MS & E.D. Stewart, PTP95(1996)71.
Dark Energy In Hybrid Inflation Seongcheol Kim (KAIST) Based on Phys. Rev. D75: (2007)
  N formalism for curvature perturbations from inflation Yukawa Institute (YITP) Kyoto University Kyoto University Misao Sasaki DESY 27/09/2006.
InflationInflation Andrei Linde Lecture 2. Inflation as a theory of a harmonic oscillator Eternal Inflation.
Inflation Sean Carroll, Caltech SSI The state of the universe appears finely-tuned 2.Inflation can make things smooth and flat 3.Primordial perturbations.
Holographic Dark Energy and Anthropic Principle Qing-Guo Huang Interdisciplinary Center of Theoretical Studies CAS
Inflation scenario via the Standard Model Higgs boson and LHC A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow A.Yu.Kamenshchik Landau.
Can observations look back to the beginning of inflation ?
Three theoretical issues in physical cosmology I. Nonlinear clustering II. Dark matter III. Dark energy J. Hwang (KNU), H. Noh (KASI)
Dark Energy in the Early Universe Joel Weller arXiv:gr-qc/
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Inflation coupled to the GB correction Zong-Kuan Guo Hangzhou workshop on gravitation and cosmology Sep 4, 2014.
Zeldovich-90, Prethermalization in early Universe D. Podolsky, G. Felder, L. Kofman, M. Peloso CITA (Toronto), Landau ITP (Moscow), University.
Initial conditions for N-body simulations Hans A. Winther ITA, University of Oslo.
Nflation: observational predictions from the random matrix mass spectrum SAK and Andrew R. Liddle 76 Phys. Rev. D 76, , 2007, arXiv:
Nonlinear curvature perturbations in two-field hybrid inflation Yukawa Institute (YITP) Kyoto University Misao Sasaki --  N in exactly soluble models.
1 Loop corrections to the primordial perturbations Yuko Urakawa (Waseda university) Kei-ichi Maeda (Waseda university)
D-term chaotic inflation in supergravity Masahide Yamaguchi (Aoyama Gakuin University) arXiv: Collaboration with Kenji Kadota 21st Aug
WMAP and smooth hybrid new inflation: Density fluctuations of an effectively single field inflation in a multi-field configuration MASAHIDE YAMAGUCHI (AOYAMA.
Introductory Review of Cosmic Inflation
Preheating with Higher Dimensional Interaction PASCOS Tomohiro Matsuda / Saitama Institute of Technology References ``Preheating with higher.
Theory and observations
Gravitational Modulated Reheating Jun’ichi Yokoyama with Yuki Watanabe, Physical Review D87(2013) arXiv: Research Center for the Early.
Spherical Collapse and the Mass Function – Chameleon Dark Energy Stephen Appleby, APCTP-TUS dark energy workshop 5 th June, 2014 M. Kopp, S.A.A, I. Achitouv,
Dynamical Fine-Tuning of Initial Conditions
Kähler Moduli Inflation
Recent status of dark energy and beyond
dark matter Properties stable non-relativistic non-baryonic
Non-gaussianity of the curvature perturbation from preheating
Quantum Spacetime and Cosmic Inflation
Shintaro Nakamura (Tokyo University of Science)
Presentation transcript:

Preheating after N-flation Shinsuke Kawai (Helsinki Institute of Physics, University of Helsinki) PRD77(2008) [arXiv:0803:0321] with D. Battefeld Abstract: We study preheating in N-flation, assuming the Marcenko-Pastur mass distribution, equal-energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to- scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single-field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single-field case. IntroductionIntroduction Mass spectrum of inflatons Dynamics of N-flation N-flation[1] is a specific realization of multi-field inflation motivated by KKLT compactification of type IIB string theory. Advantages of this model are that the initial values of inflaton fields can be chosen to be sub-Planckian, and that the mass spectrum of inflatons is calculable under some assumptions. Observable cosmological imprints (the tensor-to- scalar ratio, the non-Gaussianity parameter and the spectral index) have been computed and are found to be similar to single-field inflation. While this suggests that N-flation is compatible with current observational data, it also means one cannot distinguish N-flation from standard inflation by these data alone. Slow-roll conditions We assume equal-energy initial conditions at the onset of inflation: An advantage of N-flation is possibility to avoid super-Planckian initial conditions. So we shall set Light axion dominance We study the process of preheating for this model. Result: it is very different from the single- field case. Analytic solutions The Lagrangian where : hundreds ~ thousands Easther and McAllister[2] proposed Marcenko- Pastur distribution of inflaton masses (based on random matrix): (from renormalization of Newton’s const) (COBE normalization) We use rescaled mass parameter Inflatons (axions) interact only through gravity Initial conditions (1) for each inflaton and (2) for the whole system, where The conditions (1) are violated for heavy inflatons first, even when the whole system still undergoes inflation. The MP law prescribes the majority of the axions to be distributed around the lightest mass By the time the slow-roll parameter for the whole system (2) becomes of order unity, heavy axions are settled down at the bottom of the potential and become negligible. This is due to: Heavy fields start from smaller values due to Heavy fields undergo overdamped evolution as the Hubble parameter is still large when they exit slow-roll regime the equal-energy initial conditions The slow-roll approximation yields analytic solutions for the field evolution: which together with the initial conditions describe the axions during N-flation. Because of the light axion dominance this approximation is valid before preheating commences, provided the heavy fields are ignored.

Preheating after inflation ReferencesReferences The model of preheating When the masses of the axions are all equal, the multi-field model reduces to a single-field model, by setting ; Eqn (3) becomes N-flation with MP mass distribution Equal-mass = single-field model (for comparison) It is well known that this system exhibits parametric resonance[3], driven by the oscillating inflaton. Ignoring backreaction (justified below), the EOM are We will model preheating with a single massless bosonic field coupled to the axions via the same coupling strength. The Lagrangian is Choose (sufficient e-folding) and use only the lightest 10%,, for the preheating computation (justified by the light axion dominance) (3) (a) The time evolution of the matter field. Cosmic expansion causes occasional decreases of the amplitude (stochastic resonance). (b) The time evolution of the comoving particle number defined by where and Increasing the number of inflatons (with the same masses) does not change the resonance effect since it is equivalent to the single-field model of inflation. (the bottom panel) The oscillating part of the mass term that drives the resonance. In N-flation with MP-mass distribution the collective behavior of axions is not coherent (the oscillation of each field being dephased due to mass differences), leading to suppression of resonance. In short time scales In long time scales (a) The time evolution of the matter field. While there is some enhancement due to parametric resonance, the overall amplitude decreases as the enhancement is not strong enough to overcome the dilution due to cosmic expansion. The parameters are chosen so that the single- filed model (the left column) is recovered if we set all the masses to be equal. (b) The oscillating part of the matter mass term (to be compared with the bottom panel of the left column). The oscillations are blunt due to the relative mass differences of the axions. (c) The adiabaticity parameter which indicates the strength of resonance effect (when its modulus is large the system is less adiabatic and particles may be produced due to the resonance effect). In the equal-mass case it oscillates with amplitude larger than 1, so we can see the resonance effect is extremely weak in the MP case. (a) The time evolution of the matter field, in longer scales (time is measured in units of ). There is a burst around  (b) The comoving occupation number computed for the comoving matter field X. The particle number increases at the burst, but such bursts are not frequent enough to overcome the dilution due to cosmic expansion. (c) The oscillating part of the mass term, showing beats due to oscillating axions. (d) The adiabaticity parameter, in longer time scales than above. The burst occurs at one of the peaks, but not at every peak (note that inclusion of cosmic expansion renders the resonance effect stochastic). Summary of the results In N-flation with MP mass distribution, the resonance effect is weak in short time scales and not frequent in long time scales. Consequently, the old theory of perturbative reheating applies to this scenario. [1] Dimopoulos, Kachru, McGreevy, Wacker, arXiv:hep-th/ [2] Easther, McAllister, JCAP 05 (2006) 018 [3] Kofman, Linde, Starobinsky, Phys. Rev. D 56 (1997) 3258 See the paper for the complete list.