Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays (EAS-UAP) O. Martínez a, E. Moreno a, G. Pérez a, H. Salazar.

Slides:



Advertisements
Similar presentations
Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.
Advertisements

Progress on ACORDE (ALICE Cosmic ray detector) Ildefonso León for ACORDE-ALICE group.
Application for Pierre Auger Observatory.
Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays O. MARTINEZ, H. SALAZAR, L. VILLASEÑOR * + Grupo de Estudiantes.
Cosmic Rays with the LEP detectors Charles Timmermans University of Nijmegen.
DAQ System to Search for GRBs using Water Cerenkov Detectors Mario Castillo*, Gonzalo Perez*, Humberto Salazar* and L. Villaseñor ** * Facultad de Ciencias.
Antonis Leisos KM3NeT Design Study the calibration principle using atmospheric showers the calibration principle using atmospheric showers construction.
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope G. Bourlis, N. A. B. Gizani, A. Leisos, A. G. Tsirigotis,
A.U. Kudzhaev, D.D. Dzhappuev, V.V. Alekseenko, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, V.B. Petkov.
Detection of atmospheric muon bundles using ALICE detectors A. Fernández Tellez Universidad Autonoma de Puebla for the ALICE Collaboration VIII Simposio.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
The performance of LHCf calorimeter was tested at CERN SPS in For electron of GeV, the energy resolution is < 5% and the position resolution.
A crude (lower limit) estimation of resolution and event rate Development and Construction of an Extensive Air Shower Array in HOU Antonis Leisos, Hellenic.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
PERFORMANCE OF THE MACRO LIMITED STREAMER TUBES IN DRIFT MODE FOR MEASUREMENTS OF MUON ENERGY - Use of the MACRO limited streamer tubes in drift mode -Use.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
Detection ot the Highest Energy Cosmic Rays Lecture 1 The Violent Universe Nucl Phys B (Proc Suppl) 138 (2005) Taup Conference Proceedings 2004.
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
Contributions of the University of Bucharest to the study of high energy cosmic rays in the framework of the KASCADE-Grande experiment Octavian Sima Faculty.
Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla R. Conde 1, O. Martinez 1, T. Murrieta 1,
Geomagnetic Spectroscopy: An Estimation of Primary Mass of Cosmic Rays Rajat K Dey 1,2 Arunava Bhadra 2 Jean-No ë l Capdevielle 3 1 Department of Physics.
Nitrogen fluorescence in air for observing extensive air showers
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
Alba Cappa Universita’ and INFN Torino Čerenkov Light Measurements for the EUSO Experiment Rencontres de Moriond – Very High Energy Phenomena in the Universe.
WATER CHERENKOV DETECTOR ARRAY at the University of Puebla to study cosmic rays H. Salazar, J. Cotzomi, E. Moreno, T.Murrieta, B.Palma, E.Perez, L. Villaseñor.
Neutron ‘thunder’ accompanying an extensive air shower Erlykin A.D. P.N.Lebedev Physical Institute, Moscow, Russia.
Status and first results of the KASCADE-Grande experiment
Energy Spectrum C. O. Escobar Pierre Auger Director’s Review December /15/2011Fermilab Director's Review1.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
CODALEMA A Cosmic Ray Radio Detection Array ICRC 2007, 3-11 July Merida, Mexico CODALEMA A Cosmic Ray Radio Detection Array Didier Lebrun, LPSC Grenoble.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
The single shower calibration accuracy is about 6.7 degrees but the accuracy on the mean value (full data set calibration accuracy) scales down inversely.
EAS Time Structures with ARGO-YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento and INFN Lecce, Italy A.K Calabrese Melcarne 1, G.Marsella.
Temporal and spatial structure of the Extensive Air Shower front with the ARGO- YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento.
Cosmic-ray physics at CERN (LEP and LHC experiments) Arturo Fernández, Mario Rodriguez Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autonoma.
Ground Detectors for the Study of Cosmic Ray Showers
Cosmic ray physics in ALICE Katherin Shtejer Díaz For the ALICE Collaboration LatinoAmerican Workshop on High Energy Physics: Particles and Strings, Havana,
Study of Forbush decreases with a WC detector Luis Villaseñor in collaboration with Angelica Bahena UMSNH Symposium CINVESTAV-UNAM In memoriam Augusto.
Physical Description of IceTop 3 Nov IceTop Internal Review Madison, November 3-4, 2010 Physical Description of IceTop Paul Evenson, University.
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
Study of VHE Cosmic Ray Spectrum by means of Muon Density Measurements at Ground Level I.I. Yashin Moscow Engineering Physics Institute,
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
AMIGA – A direct measurement of muons in Pierre Auger Observatory
Juan Carlos Arteaga-Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics Universidad Michoacana, Mexico 132nd ICRCJ.C.Arteaga.
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
Performances of the KM2A prototype array J.Liu for the LHAASO Collaboration Institute of High Energy Physics, CAS 32nd International Cosmic Ray Conference,
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Tunka-133: Primary Cosmic Ray Energy Spectrum in the energy range 6·10 15 – eV L.A.Kuzmichev (SINP MSU) On behalf on the Tunka Collaboration 32th.
The Performance of the ALICE experiment for cosmic ray physics B. Alessandro, V. Canoa, A. Fernández, M. Rodríguez, M. Subieta for the ALICE Collaboration.
ICRC 2011Ignacio Taboada | Georgia Tech1 Sensitivity of HAWC to Gamma Ray Bursts Ignacio Taboada Georgia Institute of Technology Aug 11, 2011 – ICRC.
MC study of TREND Ground array Feng Zhaoyang Institute of High Energy Physics,CAS
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Arreglo EAS-UAP para el Estudio de Rayos Cósmicos alrededor de eV Humberto, Salazar, Oscar Martínez, César Alvarez, L. Villaseñor* + Estudiantes.
“Separation of cosmic-ray components in a single water Cherenkov detector" Yasser Jerónimo, Luis Villaseñor IFM-UMSNH X Mexican School of Particles and.
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
Measurement of the Response of Water Cherenkov Detectors to Secondary Cosmic-Ray Particles in the HAWC Engineering Array Using a Fast Custom-Made DAQ System.
The dynamic range extension system for the LHAASO-WCDA experiment
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Expectation of Cosmic Ray Energy Spectrum with LHAASO
Andrea Chiavassa Universita` degli Studi di Torino
Institute of High Energy Physics, CAS
Latest Results from the KASCADE-Grande experiment
Separation of Cosmic-Ray Components in Water Cherenkov Detector
The Aperture and Precision of the Auger Observatory
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Detection of GRB with Water Cherenkov Detectors
Presentation transcript:

Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays (EAS-UAP) O. Martínez a, E. Moreno a, G. Pérez a, H. Salazar a, L. Villaseñor a,b. (a) Facultad de Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla, Pue., 72000, Mexico (b) Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mich., 58040, Mexico Abstract We describe the performance of a hybrid extensive air shower (EAS) detector array built on the Campus of the University of Puebla (19oN, 90oW, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around the knee of the cosmic-ray energy spectrum. The array consists of 6 water Cherenkov detectors of 1.86 m 2 cross section and 12 liquid scintillator detectors of 1 m 2 distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. We discuss and report on measurements and reconstruction of the LDF for the electromagnetic and muonic components of extensive air showers. We also discuss the ways in which the hybrid character of the array can be used to study inclined EASs, i.e., zenithal angle > 60 degree; and also to measure mass composition of the primary cosmic rays, i.e., by estimating the relative contents of muons with respect to the EM component. a) Referencias H. Salazar and L. Villaseñor, Nucl. Instrum. and Meths A, Proc. RICH2004 Conference, M. Alarcon, et al., Nucl. Instrum. And Meths A 420 (1999) J. Nishimura, Handbuch der Physik XLVI/2, (1967) 1. H. Salazar, O. Martínez, E. Moreno, J. Cotzomi, L. Villaseñor, O. Saavedra, Nuclear Physics B (Proc. Suppl.) 122 (2003) M. Aglietta et al., Phys. Lett. B, 337 (1994) HE.1.2 EAS-UAP Array (19º N, 90ºW, 800g/cm2) PMT EMI 9030 A PMT Electron tubes 9353 K Experimental Setup 2200m a.s.l., 800 g/cm2. Located at Campus Universidad Autonoma de Puebla Hybrid: Liquid Scintillator Detectors and water Cherenkov Detectors Energy range eV DAQ System Trigger: Coincidence of 4 central detectors (40mx40m) NIM y CAMAC. Use of digital Osciloscopes as ADCs Rate: 80 eventos/h Monitoring Use CAMAC scalers to measure rates of single partícles on each detector. Day-night variations <10%  /mean around 3% Calibration (Control Experiments) ~74 pe Decay electron at 0.17 VEM = 41 MeV Indoors WCD: MPV of EM peak = 0.12 VEM ~ 29 MeV, i.e., dominated by knock-on + decay electrons Outdoors WCD: MPV of EM peak = 0.12 VEM ~ 29 MeV, i.e., dominated by EM particles ~ 10 MeV WCD Liquid Scint Muons deposit 240 MeV in 1.20m high water and only 26 MeV in 13 cm high liquid, while electrons deposit all of their energy. For 10 Mev electrons we expect: Mu/EM=24 for Cherenkov Mu/EM=2.6 for Liq. Scint. Outdoors Liquid Scintillator Detector: MPV of EM peak = 0.30 VEM i.e., dominated by EM particles ~ 10 MeV Angular Distribution Angular distribution inferred directly from the relative arrival times of shower front. Zenithal distribution in good agreement with the literature: cos p  sen  Flat azimuthal distribution Lateral Distribution Functions Energy Determination EAS-TOP, Astrop. Phys, 10(1999)1-9 N e, obtained for vertical showers. The fitted curve is I k (N e /N ek ) -g, gives g=2.44±0.13 which corresponds to a spectral index of the enerfy distributions of g=2.6 Mass Composition Hybrid Array Iterations Process. Start with N e =82,300, N mu = 32700, E 0 = 233 TeV Iteration Process. End with N e =68000, N mu = 18200, E 0 = 196 TeV Mass Composition Non-Hybrid Array Do a three-parameter fit to : Mass Composition Non-Hybrid but Composite Array Two Identical types of Cherenkov Detectors one filled with 1.20 m of water and the other with 0.60 m, i.e., VEM C’ =0.5VEM C i.e., do independent fits of  EM and  muon to NKG and Greissen LDF, respectively, where: Conclusions We have checked the stability and performed the calibration of the detectors. We have measured and analyzed the arrival direction of showers. We determine the energy of the primary by measuring the total number of charged particles obtaining by integration of the fitted LDF. Study of Muon/Electromagnetic ratio is underway: