Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 14)
Advertisements

EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 8)
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 10)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
EC220 - Introduction to econometrics (chapter 7)
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: types of regression model and assumptions for a model a Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: plims and consistency Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: stationary processes Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: introduction Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient Original citation:
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 7)
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
EC220 - Introduction to econometrics (chapter 9)
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
EC220 - Introduction to econometrics (chapter 12)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 7) Slideshow: weighted least squares and logarithmic regressions Original citation:
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
4 In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION General model with lagged variables Static.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 12). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification that survives the tests to which it is subjected, we have followed what is described as a specific-to-general procedure for model selection, and it is open to serious criticism. DYNAMIC MODEL SPECIFICATION

2 General model with lagged variables Static model AR(1) model Model with lagged dependent variable If you start with a poorly specified model, in our case the static model, the various diagnostic test statistics are likely to be invalidated. Thus there is a risk that the model may survive the tests and appear to be satisfactory, even though it is misspecified. DYNAMIC MODEL SPECIFICATION

3 General model with lagged variables Static model AR(1) model Model with lagged dependent variable To avoid this danger, you should in principle adopt a general-to-specific approach. You should start with a model that is sufficiently general to avoid potential problems of underspecification, and then see if you can legitimately simplify it. DYNAMIC MODEL SPECIFICATION

4 General model with lagged variables Static model AR(1) model Model with lagged dependent variable In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION

5 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Having fitted it, we might be able to simplify it to the static model, if the lagged variables individually and as a group do not have significant explanatory power. DYNAMIC MODEL SPECIFICATION

6 General model with lagged variables Static model AR(1) model Model with lagged dependent variable If the lagged variables do have significant explanatory power, we could perform a common factor test and see if we could simplify the model to an AR(1) specification. DYNAMIC MODEL SPECIFICATION

7 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Sometimes we may find that a model with a lagged dependent variable is an adequate dynamic specification, if the other lagged variables lack significant explanatory power. DYNAMIC MODEL SPECIFICATION

8 General model with lagged variables Static model AR(1) model Model with lagged dependent variable In the case of the housing regression, we have done exactly the opposite. We started with a crude static model. DYNAMIC MODEL SPECIFICATION

9 General model with lagged variables Static model AR(1) model Model with lagged dependent variable We switched to an AR(1) specification. DYNAMIC MODEL SPECIFICATION

10 General model with lagged variables Static model AR(1) model Model with lagged dependent variable We turned to the more general model when the common factor test revealed that the AR(1) specification was inadequate. DYNAMIC MODEL SPECIFICATION

11 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Finally we ended up with a model with a lagged dependent variable, perhaps a little lucky to do so. DYNAMIC MODEL SPECIFICATION

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 12.5 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics