© 2004 Goodrich, Tamassia Hash Tables1   0 1 2 3 4 451-22-0004 981-10-0002 025-61-0001.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Hash Tables
Advertisements

© 2004 Goodrich, Tamassia Hash Tables
Dictionaries 4/1/2017 2:36 PM Hash Tables  …
Chapter 9: Maps, Dictionaries, Hashing Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
Maps. Hash Tables. Dictionaries. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Data Structures Lecture 12 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
TTIT33 Algorithms and Optimization – Lecture 5 Algorithms Jan Maluszynski - HT TTIT33 – Algorithms and optimization Lecture 5 Algorithms ADT Map,
Log Files. O(n) Data Structure Exercises 16.1.
Hashing Techniques.
Maps, Dictionaries, Hashtables
CSC311: Data Structures 1 Chapter 9: Maps and Dictionaries Objectives: Map ADT Hash tables –Hash functions and hash code –Compression functions and collisions.
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
Dictionaries and Hash Tables1  
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
COMP 171 Data Structures and Algorithms Tutorial 10 Hash Tables.
Hashing General idea: Get a large array
Dictionaries 4/17/2017 3:23 PM Hash Tables  
Maps, Hash Tables and Dictionaries Chapter 10.1, 10.2, 10.3, 10.5.
Maps, Dictionaries, Hashing
CS 221 Analysis of Algorithms Data Structures Dictionaries, Hash Tables, Ordered Dictionary and Binary Search Trees.
CS212: DATA STRUCTURES Lecture 10:Hashing 1. Outline 2  Map Abstract Data type  Map Abstract Data type methods  What is hash  Hash tables  Bucket.
Hash Tables1   © 2010 Goodrich, Tamassia.
Dictionaries and Hash Tables1 Hash Tables  
Maps, Hash Tables, Skip Lists, Sets last Update: Nov 4, 2014 EECS2011: Maps, Hash Tables, Skip Lists, Sets1.
1 HASHING Course teacher: Moona Kanwal. 2 Hashing Mathematical concept –To define any number as set of numbers in given interval –To cut down part of.
Hashing Hashing is another method for sorting and searching data.
© 2004 Goodrich, Tamassia Hash Tables1  
Chapter 10 Hashing. The search time of each algorithm depend on the number n of elements of the collection S of the data. A searching technique called.
COSC 2007 Data Structures II Chapter 13 Advanced Implementation of Tables IV.
Hashtables. An Abstract data type that supports the following operations: –Insert –Find –Remove Search trees can be used for the same operations but require.
Hashing by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data Structures.
CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++,
Chapter 11 (Lafore’s Book) Hash Tables Hwajung Lee.
Prof. Amr Goneid, AUC1 CSCI 210 Data Structures and Algorithms Prof. Amr Goneid AUC Part 5. Dictionaries(2): Hash Tables.
CSC 212 – Data Structures Lecture 28: More Hash and Dictionaries.
Lecture14: Hashing Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Hash Maps Rem Collier Room A1.02 School of Computer Science and Informatics University College Dublin, Ireland.
Algorithms Design Fall 2016 Week 6 Hash Collusion Algorithms and Binary Search Trees.
Hash Tables 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Maps 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Hashing (part 2) CSE 2011 Winter March 2018.
CSCI 210 Data Structures and Algorithms
Hashing CSE 2011 Winter July 2018.
Dictionaries and Hash Tables
Dictionaries Dictionaries 07/27/16 16:46 07/27/16 16:46 Hash Tables 
© 2013 Goodrich, Tamassia, Goldwasser
Dictionaries 9/14/ :35 AM Hash Tables   4
Hash Tables 3/25/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Data Structures and Database Applications Hashing and Hashtables in C#
Hash Table.
Data Structures Maps and Hash.
Data Structures and Database Applications Hashing and Hashtables in C#
Hash Tables 11/22/2018 3:15 AM Hash Tables  1 2  3  4
Dictionaries 11/23/2018 5:34 PM Hash Tables   Hash Tables.
Dictionaries and Hash Tables
Copyright © Aiman Hanna All rights reserved
Hash Tables   Maps Dictionaries 12/7/2018 5:58 AM Hash Tables  
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Dictionaries and Hash Tables
Dictionaries 1/17/2019 7:55 AM Hash Tables   4
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Hash Tables Computer Science and Engineering
Hash Tables Computer Science and Engineering
Hash Tables Computer Science and Engineering
Dictionaries 4/5/2019 1:49 AM Hash Tables  
CS210- Lecture 17 July 12, 2005 Agenda Collision Handling
CS210- Lecture 16 July 11, 2005 Agenda Maps and Dictionaries Map ADT
Dictionaries and Hash Tables
Presentation transcript:

© 2004 Goodrich, Tamassia Hash Tables1  

© 2004 Goodrich, Tamassia Hash Tables2 Recall the Map ADT Map ADT methods: get(k): if the map M has an entry with key k, return its assoiciated value; else, return null put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null size(), isEmpty() keys(): return an iterator of the keys in M values(): return an iterator of the values in M

© 2004 Goodrich, Tamassia Hash Tables3 Hash Functions and Hash Tables A hash function h maps keys of a given type to integers in a fixed interval [0, N  1] Example: h(x)  x mod N is a hash function for integer keys The integer h(x) is called the hash value of key x A hash table for a given key type consists of Hash function h Array or Vector (called “table”) of size N When implementing a map with a hash table, the goal is to store item (k, o) at index i  h(k)

© 2004 Goodrich, Tamassia Hash Tables4 Example We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer Our hash table uses an array of size N  10,000 and the hash function h(x)  last four digits of x     …

© 2004 Goodrich, Tamassia Hash Tables5 Hash Functions A hash function is usually specified as the composition of two functions: Hash code: h 1 : keys  integers Compression function: h 2 : integers  [0, N  1] The hash code is applied first, and the compression function is applied next on the result, i.e., h(x) = h 2 (h 1 (x)) The goal of the hash function is to “disperse” the keys in a random way

© 2004 Goodrich, Tamassia Hash Tables6 Compression Functions Division: h 2 (y)  y mod N The size N of the hash table is usually chosen to be a prime The reason has to do with number theory… Multiply, Add and Divide (MAD): h 2 (y)  (ay  b) mod N a and b are nonnegative integers such that a mod N  0 Otherwise, every integer would map to the same value b

© 2004 Goodrich, Tamassia Hash Tables7 Collision Handling Collisions occur when different elements are mapped to the same cell Separate Chaining: let each cell in the table point to a linked list of entries that map there Separate chaining is simple, but requires additional memory outside the table   

© 2004 Goodrich, Tamassia Hash Tables8 Map Methods with Separate Chaining used for Collisions Delegate operations to a list-based map at each cell: Algorithm get(k): Output: The value associated with the key k in the map, or null if there is no entry with key equal to k in the map return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]} Algorithm put(k,v): Output: If there is an existing entry in our map with key equal to k, then we return its value (replacing it with v); otherwise, we return null t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]} if t = null then {k is a new key } n = n + 1 return t Algorithm remove(k): Output: The (removed) value associated with key k in the map, or null if there is no entry with key equal to k in the map t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]} if t ≠ null then {k was found} n = n - 1 return t

© 2004 Goodrich, Tamassia Hash Tables9 Open Addressing The colliding item is placed in a different cell of the table. Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell Each table cell inspected is referred to as a “probe” Colliding items lump together, causing future collisions to cause a longer sequence of probes Example: h(x)  x mod 13 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

© 2004 Goodrich, Tamassia Hash Tables10 Search with Linear Probing Consider a hash table A that uses linear probing get (k) We start at cell h(k) We probe consecutive locations until one of the following occurs  An item with key k is found, or  An empty cell is found, or  N cells have been unsuccessfully probed Algorithm get(k) i  h(k) p  0 repeat c  A[i] if c   return null else if c.key ()  k return c.element() else i  (i  1) mod N p  p  1 until p  N return null

© 2004 Goodrich, Tamassia Hash Tables11 Updates with Linear Probing To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements remove (k) We search for an entry with key k If such an entry (k, o) is found, we replace it with the special item AVAILABLE and we return element o Else, we return null put (k, o) We throw an exception if the table is full We start at cell h(k) We probe consecutive cells until one of the following occurs  A cell i is found that is either empty or stores AVAILABLE, or  N cells have been unsuccessfully probed We store entry (k, o) in cell i

© 2004 Goodrich, Tamassia Hash Tables12 Double Hashing Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series (i  jd(k)) mod N for j  0, 1, …, N  1 The secondary hash function d ( k ) cannot have zero values The table size N must be a prime to allow probing of all the cells Common choice of compression function for the secondary hash function: d 2 ( k )  q  (k mod q) where q  N q is a prime The possible values for d 2 ( k ) are 1, 2, …, q

© 2004 Goodrich, Tamassia Hash Tables13 Consider a hash table storing integer keys that handles collision with double hashing N  13 h(k)  k mod 13 d(k)  7  k mod 7 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order Example of Double Hashing

© 2004 Goodrich, Tamassia Hash Tables14 Performance of Hashing In the worst case, searches, insertions and removals on a hash table take O(n) time The worst case occurs when all the keys inserted into the map collide The load factor   n  N affects the performance of a hash table Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is 1  (1   ) The expected running time of all the dictionary ADT operations in a hash table is O(1) In practice, hashing is very fast provided the load factor is not close to 100% When the load gets too high, we can rehash…. Applications: very numerous, e.g. computing frequencies.