Spectrum Analysis of SGR 1900+14 in quiescent (2nd edition) Bubu 2002/12/12&18.

Slides:



Advertisements
Similar presentations
XMM EPIC MOS Jenny Carter 4 th EPIC BG WG Meeting Mallorca, 25/10/06 BGWG blank sky data analysis Jenny Carter, University of Leicester.
Advertisements

Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Chandra data reduction The CDFs Giorgio, Margherita, Elisabeta, Eleonora, Lazarus, Enrica, Laurel, Enrique, Fabrizio.
S.Mereghetti - Simbol-X: The hard X-ray Universe in focus - Bologna -15/5/20071 Studying the Galactic Ridge Emission with SIMBOL-X Sandro Mereghetti IASF.
The Sharpest Spatial View of a Black Hole Accretion Flow from the Chandra X-ray Visionary Project Observation of the NGC 3115 Bondi Region Jimmy Irwin.
Soft X-ray line reflection in NLS1 galaxies Th. Boller, A. Müller, A. Ibarra MPE Garching Excellence Cluster Universe Munich XMM SOC, Villa Franca, Spain.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Other material XSPEC manual: “X-ray school” lecture notes:
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
Bremsstrahlung Rybicki & Lightman Chapter 5. Bremsstrahlung “Free-free Emission” “Braking” Radiation Radiation due to acceleration of charged particle.
February 2004GLAST - DC1 Closeout Meeting GRB Detection & spectral analysis in DC1 Data Nicola Omodei Francesco Longo, Monica Brigida INFN Pisa.
1 Statistical determination of chromospheric density structure using RHESSI flares Pascal Saint-Hilaire Space Sciences Lab, UC Berkeley RHESSI Workshop.
X-ray Observations of Solitary Neutron Stars an adventure to understand the structure and evolution of neutron stars 國立清華大學物理系與天文所 張祥光.
GLAST Science Support CenterDecember8-9, 2003 DC1 Workshop Gamma-Ray Burst Spectral Analysis with the SAE Prepared by Yasushi Ikebe – GSSC Presented by.
C&A 10April06 1 Point Source Detection and Localization Using the UW HealPixel database Toby Burnett University of Washington.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
You would not go and count every single flower
Multi-Instrument DEM (RHESSI – GOES) Calculations J.McTiernan 5 th General RHESSI Workshop 8-June-2005.
Can people meet from 2:40 to 3:30 on Tuesday, September 5?
GLAST Science Support Center June 29, 2005Data Challenge II Software Workshop GRB Analysis David Band GSFC/UMBC.
Title: Quién le pone el cascabel al gato ? J. F. Albacete Colombo Univ. de Rio Negro, Viedma, ARG & Ettore Flaccomio Osservatorio Astronomico di Palermo,
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
RXJ a soft X-ray excess in a low luminosity accreting pulsar La Palombara & Mereghetti astro-ph/
Outline: (1) The data sample (2) Some news on the analysis method (3) Efficiency revised (4) Background revised (5) Data: spectrum + “phi-curve”
Modelling of the Effects of Return Current in Flares Michal Varady 1,2 1 Astronomical Institute of the Academy of Sciences of the Czech Republic 2 J.E.
Conclusions We established the characteristics of the Fe K line emission in these sources. In 7 observations, we did not detect the source significantly.
A multi-colour survey of NGC253 with XMM-Newton Robin Barnard, Lindsey Shaw Greening & Ulrich Kolb The Open University.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
Chapter 26 Chi-Square Testing
Udine Nicola Omodei 1 GRB Trigger Algorithms From DC1 to DC2 Nicola Omodei Riccardo Giannitrapani Francesco Longo Monica Brigida.
RHESSI Microflare Statistics Iain Hannah, S. Christe, H. Hudson, S. Krucker, L. Fletcher & M. A. Hendry.
A taste of statistics Normal error (Gaussian) distribution  most important in statistical analysis of data, describes the distribution of random observations.
Outburst of LS V detected by MAXI, RXTE, Swift Be X-ray Binary LS V INTRODUCTION - Be X-ray Binary consists of a neutron star and Be star.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
CEA DSM Dapnia SAp Diego Gotz - Hard X-ray tails in Magnetars 15/05/ Hard X-ray Tails in Magnetars A Case Study for Simbol-X Diego Götz CEA Saclay.
Energetic electrons acceleration: combined radio and X-ray diagnostics
Internal Irradiation of the Sgr B2 Molecular Cloud Casey Law Northwestern University, USA A reanalysis of archived X-ray and radio observations to understand.
Discovery of K  lines of neutral sulfur, argon, and calcium atoms from the Galactic Center Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo.
Observations of AXPs and SGRs: 1E and SGR Andrea Tiengo (IASF-MI, Univ. Milano) S. Mereghetti, G. L. Israel, L. Stella, S. Zane, A.
Neutrinos and TeV photons from Soft Gamma Repeater giant flares Neutrino telescopes can be used as TeV  detectors for short time scale events using 
Rotating Radio Transients Maura McLaughlin West Virginia University 12 September 2007.
(a) (b) (c) DETX DETY DETX DETY XIS2 DETX DETY XIS0 XIS2 Counts keV -1 ACTY N. Tawa, M. Nagai, K. Hayasida, H. Nakamoto, M. Namiki (Osaka-U), H. Yamaguchi.
Spatial Distribution of the Galactic Diffuse X-Rays and the Spectral/Timing Study of the 6.4-keV Clumps Katsuji Koyama Department of Physics, Graduate.
Spectra and Temporal Variability of Galactic Black-hole X-ray Sources in the Hard State Nick Kylafis University of Crete This is part of the PhD Thesis.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
Error Modeling Thomas Herring Room ;
I.F.Malov Pushchino Radio Astronomy Observatory, Lebedev Physical Institute RUSSIA Do «magnetars» really exist? AXPs and SGRs Magnetars (dP.
Metal abundance evolution in distant galaxy clusters observed by XMM-Newton Alessandro Baldi Astronomy Dept. - University of Bologna INAF - OABO In collaboration.
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
1 Constraining ME Flux Using ν + e Elastic Scattering Wenting Tan Hampton University Jaewon Park University of Rochester.
On the Importance of Uncertainties in Response Functions Martin C. Weisskopf Stephen L. O’Dell & Allyn F. Tennant NASA Marshall Space Flight Center 2010.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Ni ABUNDANCE IN THE CORE OF THE PERSEUS CLUSTER: AN ANSWER TO THE SIGNIFICANCE OF RESONANT SCATTERING AND SNIa ENRICHMENT Fabio Gastaldello (CNR-IASF,
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
The soft N132D to study the gain of the EPIC-pn camera
The RGS view of Markarian 421 Lights Shadows And
High Energy emission from the Galactic Center
XMM-Newton Observation of the composite SNR G0. 9+0
The spectral properties of Galactic X-ray sources at faint fluxes
The spectral evolution of impulsive solar X-ray flares
Insight-HXMT observations on type-I &type-II X-ray bursts
Katsuji Koyama Kyoto University X-ray or Electron irradiation ?
XSPEC and Response Modeling
Presentation transcript:

Spectrum Analysis of SGR in quiescent (2nd edition) Bubu 2002/12/12&18

Contents About SGR My job Show time!! Current results Conclusion (and next step)

About SGR One of the 4+1 SGRs In the galactic plane Spin-down energy problem More correct position: “ , ” Models for it in quiescent: No really serious one!! History: discover:1979 giant flare: 1998/8/27 Similar to AXPs

My job At present, most papers fit the spectrum of SGRs in quiescence with a “ power law ” From the data of AXPs, we may use two or more blackbody plus a power law to fit its spectrum. This gives us a hint that maybe we can fit the spectrum of SGRs in the same way. The result, will provide some constraints and hints about what SGRs and AXPs are. These help a more correct and detailed physical explanation.

Flow chart of my job: ftp.asdc.asi /anonymous

In spec analysis, we need …… *.pha *.rmf (response matrix file) *.arf (ancillary response file) Background files (Make it by yourself!)

“ Channel type ” PHA The device which measures the energy of a photon, often used to the refer to the raw numbers measured by the device. PI Pulse invariant. PHA values corrected for spatial and temporal changes in gain.

Next, Before show time ………

Header of MECS2_ evt Naxis2=10926 /number of rows in table CONTENT= ‘ EVENT LIST ’ TELESCOP= ‘ SAX ’ INSTRUME= ‘ MECS2 ’ OBJECT= ‘ SGR ’ RA_OBJ= DEC_OBJ= DATE-OBS= ‘ ’ TIME-OBS= ’ 01:21: ’ /(HH:MM:SS) DATA-END= ‘ ’ TIME-END= ’ 01:05: ’ And ………

Some points …… : SAOimage: How to determine the center and the radius of the region? Xselect: How to filter time and region (and pha_cutoff), then extract spectrum? Xspec: What models should we consider? How to choose a model? How we say a fitting is good or not? BeppoSAX MECS2: What steps will it influence? Go!!

In Xspec analysis, we need …… *.pha *.rmf (response matrix file) *.arf (ancillary response file) Background files (Make it by yourself!!)

One way to make a background file (blank field) : E-03 counts/sec E-03 counts/sec E-03 counts/sec Note: in DETX DETY coordinate ( )/2.8279=5 corfile cornorm

Current results: data "bubu.pha" Backgrnd & corfile “ bubu_bgd.pha" response "mecs2_sep97.rmf " arf "mecs2_4_sep97.arf " ignore **

In Xspec, there are two basic kinds of model components: Additive model components (sources) Multiplicative model components (mixing, convolution, pile up) There must be least one additive component in a model

About bbody (Additive) A blackbody spectrum A(E) = K E**2 dE / ((par1)**4 (exp(E/par1)-1)) where : par1 = temperature kT in keV K = L39/(D10)**2, where L39 is the source luminosity in units of 10**39 ergs/sec and D10 is the distance to the source in units of 10 kpc

About bremss (Additive) A thermal bremsstrahlung spectrum based on the Kellogg, Baldwin & Koch(ApJ 199, 299) polynomial fits to the Karzas & Latter numerical values. A routine from Kurucz is used for low temperatures. The He abundance is assumed to be 8.5% by number. par1 = plasma temperature in keV K = (3.02e-15/4/pi/D^2) Int n_e n_I dV where n_e is the electron density (cm^-3), n_I is the ion density (cm^-3), and D is the distance to the source (cm).

About powerlaw (Additive) Simple photon power law A(E) = K (E/1 keV)**(-par1) where : par1 = photon index of power law (dimensionless) K = photons/keV/cm**2/s at 1 keV.

About phabs (multiplicative) Photoelectric absorption using cross-sections set by the xsect command. The relative abundances are set by the abund command A(E) = exp(-par1*sigma(E)) where sigma(E) is the photo-electric cross-section (NOT including Thomson scattering). Note that the default He cross-section changed in v11. The old version can be recovered using the command xsect obcm. par1 = equivalent hydrogen column (in units of 10**22 atoms/cm**2)

I ’ ll fit models for: 1_Phab(po) 2_phab(bb) 3_phab(bb+po) 4_phab(bb+bb) 5_phab(br) 6_phab(bb+br) 7_phab(br+po) 8_phab(bb+br+po)

1_Model: phabs[1]( powerlaw[2] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / powerlaw PhoIndex / powerlaw norm E-03 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 187 degrees of freedom Null hypothesis probability = 0.498

1_Model: phabs[1]( powerlaw[2] )

2_Model: phabs[1]( bbody[2] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bbody kT keV / E bbody norm E-05 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 187 degrees of freedom Null hypothesis probability = 3.317E-05

2_Model: phabs[1]( bbody[2] )

3_Model: phabs[1]( bbody[2] + powerlaw[3] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bbody kT keV / bbody norm E-05 +/ E powerlaw PhoIndex / powerlaw norm E-02 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 185 degrees of freedom Null hypothesis probability = 0.573

3_Model: phabs[1]( bbody[2] + powerlaw[3] )

4_Model: phabs[1]( bbody[2] + bbody[3] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bbody kT keV / bbody norm E-05 +/ E bbody kT keV / E bbody norm E-05 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 185 degrees of freedom Null hypothesis probability = 0.663

4_Model: phabs[1]( bbody[2] + bbody[3] )

5_Model: phabs[1]( bremss[2] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bremss kT keV / bremss norm E-03 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 187 degrees of freedom Null hypothesis probability = 0.414

5_Model: phabs[1]( bremss[2] )

6_Model: phabs[1]( bbody[2] + bremss[3] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bbody kT keV / bbody norm E-05 +/ E bremss kT keV / bremss norm E-02 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 185 degrees of freedom Null hypothesis probability = 0.611

6_Model: phabs[1]( bbody[2] + bremss[3] )

7_Model: phabs[1]( bremss[2] + powerlaw[3] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bremss kT keV / bremss norm E-03 +/ E powerlaw PhoIndex / powerlaw norm E-04 +/ E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 185 degrees of freedom Null hypothesis probability = 0.574

7_Model: phabs[1]( bremss[2] + powerlaw[3] )

8_Model: phabs[1]( bbody[2] + powerlaw[3] + bremss[4] ) Model Fit Model Component Parameter Unit Value par par comp phabs nH 10^ / bbody kT keV / bbody norm E-05 +/ E powerlaw PhoIndex / powerlaw norm E-02 +/ E bremss kT keV / bremss norm / E Chi-Squared = using 190 PHA bins. Reduced chi-squared = for 183 degrees of freedom Null hypothesis probability = 0.524

8_Model: phabs[1]( bbody[2] + powerlaw[3] + bremss[4] )

Null hypothesis probability of these models are: 1_Phab(po) 2_phab(bb) 3_phab(bb+po) 4_phab(bb+bb) 5_phab(br) 6_phab(bb+br) 7_phab(br+po) 8_phab(bb+br+po) E

But …… Astro-ph/

Conclusion (& next step): error, recornrm α=2.2?? Reasonable!! Try MECS and LECS data. Compare with more results. Uncertainties??......

It’s a long road……”\|O.o|/” It’s a long road……”\|O.o|/”