Supply Chain Location Decisions Chapter 11 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall 11- 01.

Slides:



Advertisements
Similar presentations
Chapter 9– Capacity Planning & Facility Location
Advertisements

© 2007 Pearson Education Location Chapter 11. © 2007 Pearson Education How Location fits the Operations Management Philosophy Operations As a Competitive.
Network Design in the Supply Chain
F O U R T H E D I T I O N Facility Decisions: Location and Capacity © The McGraw-Hill Companies, Inc., 2003 chapter 7 DAVIS AQUILANO CHASE PowerPoint Presentation.
Chapter 9– Capacity Planning & Facility Location
8 McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.
Location Strategy.
Location Strategy. Introduction What – Location Decisions Where – Important to company Why – Costly to change.
Location Planning and Analysis
Chapter 9– Capacity Planning & Facility Location
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved. Location.
Global Hot Spots East Asia. The Pacific Basin, including Japan, South Korea, China, Taiwan, and Singapore became the fastest-growing and foremost trading.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter Location Planning and Analysis 8 Slides prepared by Laurel Donaldson Douglas.
1 IES 371 Engineering Management Chapter 10: Location Week 11 August 17, 2005 Objectives  Identify the factors affecting location choices  Explain how.
Chapter 9– Capacity Planning & Facility Location
Capacity Planning & Facility Location
Supply Chain Management
PowerPoint presentation to accompany Heizer/Render - Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
A – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Decision Making A For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Location Planning and Analysis
Supply Chain Location Decisions Chapter 11
OPSM 301 Operations Management
CHAPTER EIGHT LOCATION PLANNING AND ANALYSIS Chapter 8 Location Planning and Analysis.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 5 th Edition Chapter 7 Supplement Roberta.
Business Location Decisions Dr. Everette S. Gardner, Jr.
© Wiley Chapter 9– Capacity Planning & Facility Location Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition © Wiley 2010.
Location planning and analysis
Capacity Planning & Facility Location
CHAPTER EIGHT Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 1999 LOCATION PLANNING AND ANALYSIS 8-1 Chapter 8 Location Planning and Analysis.
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Sixth Edition © 2002 Prentice Hall, Inc. All rights reserved. Chapter 9.
Logistics Management CHAPTER ELEVEN McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Logistics Management CHAPTER ELEVEN McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
© Anita Lee-Post Facility Location Part 1 by Anita Lee-Post.
Operations Management Session 5 Henry Y. LOCATION STRATEGIES.
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Sixth Edition © 2002 Prentice Hall, Inc. All rights reserved. Chapter 9.
Location Strategic Considerations in Facility Location  Access to markets, ie EU  Nissan, Toyota & Honda invested $2.6 billion in UK  Responsiveness.
Facility Location COB 300C – Fall Facility Location 4 Facility Location is the placement of facility with respect to customers, suppliers and other.
Location decisions are strategic decisions. The reasons for location decisions Growth –Expand existing facilities –Add new facilities Production Cost.
Copyright © 2005 The McGraw-Hill Companies. All rights reserved. McGraw-Hill/Irwin 11–1 CHAPTER OBJECTIVES Present a framework for evaluating alternative.
11 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Location 11 For Operations Management, 9e by Krajewski/Ritzman/Malhotra ©
Operations Management
Location Planning and Analysis Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent.
Capacity Planning Pertemuan 04
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 8 Location Planning and Analysis.
Location Planning and Analysis
PRODUCTION & OPERATIONS MANAGEMENT Module II Location & Facility Prof. A.Das, MIMTS Prof. A.Das, MIMTS.
Chapter 8 Location Planning and Analysis
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 8 Location Planning and Analysis.
FACILITY LOCATION.
Facility Location. Meaning facilities location problem is an important strategic level decision making for an organisation. One of the key features of.
The selection of location is a key-decision as large investment is made in building plant and machinery. It is not advisable or not possible to change.
Reid & Sanders, Operations Management © Wiley 2002 Capacity Planning and Facility Location 9 C H A P T E R.
Copyright ©2009 Pearson Education, Inc. Publishing as Prentice Hall 22-1 Operations Management 10.
Facility Location I Chapter 10
Importance of Location 1.Accounting which prepares cost estimates for changing locations as well as operating at new locations. 2.Distribution which seeks.
A – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Decision Making A For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Chapter 9– Capacity Planning & Facility Location
Facility Location Models
OPERATIONS MANAGEMENT: Creating Value Along the Supply Chain,
Chapter 5 Network Design in the Supply Chain
Operations Management
Facility Location Chapter #4.
Supply Chains and Logistics Chapter 13
Location Analysis and Planning Chapter 8
Location A. A. Elimam This presentation covers the quantitative material in Chapter 8. This slide can be used to introduce the material and basic concepts.
FACILITY LOCATION Relevance of Facility Location Decisions.
Facility Location Part 1
Operations Management
Presentation transcript:

Supply Chain Location Decisions Chapter 11 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

What is a Facility Location? Facility Location The process of determining geographic sites for a firm’s operations Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Distribution center (DC) A warehouse or stocking point where goods are stored for subsequent distribution to manufacturers, wholesalers, retailers, and customers.

Location Decisions Factors affecting location decisions – Sensitive to location – High impact on the company’s ability to meet its goals Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Location Decisions Dominant factors in manufacturing – Favorable labor climate – Proximity to markets – Impact on Environment – Quality of life – Proximity to suppliers and resources – Proximity to the parent company’s facilities – Utilities, taxes, and real estate costs – Other factors Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Location Decisions Dominant factors in services – Impact of location on sales and customer satisfaction – Proximity to customers – Transportation costs and proximity to markets – Location of competitors – Site-specific factors Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

What is a GIS? GIS – Geographical Information System A system of computer software, hardware, and data that the firm’s personnel can use to manipulate, analyze, and present information relevant to a location decision Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Locating a Single Facility Expand onsite, build another facility, or relocate to another site – Onsite expansion – Building a new plant or moving to a new retail or office space Comparing several sites Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Selecting a New Facility Step 1:Identify the important location factors and categorize them as dominant or secondary. Step 2:Consider alternative regions; then narrow to alternative communities and finally specific sites. Step 3:Collect data on the alternatives. Step 4:Analyze the data collected, beginning with the quantitative factors. Step 5:Bring the qualitative factors pertaining to each site into the evaluation Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

A new medical facility, Health-Watch, is to be located in Erie, Pennsylvania. The following table shows the location factors, weights, and scores (1 = poor, 5 = excellent) for one potential site. The weights in this case add up to 100 percent. A weighted score (WS) will be calculated for each site. What is the WS for this site? Example 11.1 Location FactorWeightScore Total patient miles per month254 Facility utilization203 Average time per emergency trip203 Expressway accessibility154 Land and construction costs101 Employee preferences Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

The WS for this particular site is calculated by multiplying each factor’s weight by its score and adding the results: Example 11.1 Location FactorWeightScore Total patient miles per month254 Facility utilization203 Average time per emergency trip 203 Expressway accessibility154 Land and construction costs101 Employee preferences105 WS = (25  4) + (20  3) + (20  3) + (15  4) + (10  1) + (10  5) = = 340 The total WS of 340 can be compared with the total weighted scores for other sites being evaluated Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Applying the Load-Distance ( ld ) Method Identify and compare candidate locations – Like weighted-distance method – Select a location that minimizes the sum of the loads multiplied by the distance the load travels – Time may be used instead of distance Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Applying the Load-Distance ( ld ) Method Calculating a load-distance score – Varies by industry – Use the actual distance to calculate ld score – Use rectangular or Euclidean distances – Different measures for distance – Find one acceptable facility location that minimizes the ld score Formula for the ld score ld =  l i d i i Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Application 11.2 What is the distance between (20, 10) and (80, 60)? Euclidean distance: d AB = (x A – x B ) 2 + (y A – y B ) 2 = (20 – 80) 2 + (10 – 60) 2 = 78.1 Rectilinear distance: d AB = |x A – x B | + |y A – y B | = |20 – 80| + |10 – 60| = Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Application 11.3 Management is investigating which location would be best to position its new plant relative to two suppliers (located in Cleveland and Toledo) and three market areas (represented by Cincinnati, Dayton, and Lima). Management has limited the search for this plant to those five locations. The following information has been collected. Which is best, assuming rectilinear distance? Locationx,y coordinatesTrips/year Cincinnati(11,6)15 Dayton(6,10)20 Cleveland(14,12)30 Toledo(9,12)25 Lima(13,8) Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Application 11.3 Location x,y coordinates Trips/year Cincinnati(11,6)15 Dayton(6,10)20 Cleveland(14,12)30 Toledo(9,12)25 Lima(13,8)40 15(9) + 20(0) + 30(10) + 25(5) + 40(9)= (9) + 20(10) + 30(0) + 25(5) + 40(5)= (8) + 20(5) + 30(5) + 25(0) + 40(8)= (4) + 20(9) + 30(5) + 25(8) + 40(0)= (0) + 20(9) + 30(9) + 25(8) + 40(4)= 810 Cincinnati = Dayton = Cleveland = Toledo = Lima = Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Center of Gravity Method A good starting point – Find x coordinate, x *, by multiplying each point’s x coordinate by its load ( l t ), summing these products  l i x i, and dividing by  l i – The center of gravity’s y coordinate y * found the same way – Generally not the optimal location x * =  l i x i  l i i i y * =  l i y i  l i i i Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Application 11.4 A firm wishes to find a central location for its service. Business forecasts indicate travel from the central location to New York City on 20 occasions per year. Similarly, there will be 15 trips to Boston, and 30 trips to New Orleans. The x, y-coordinates are (11.0, 8.5) for New York, (12.0, 9.5) for Boston, and (4.0, 1.5) for New Orleans. What is the center of gravity of the three demand points? x* = =  l i x i  l i i i y* = =  l i y i  l i i i [(20  11) + (15  12) + (30  4)] ( ) = 8.0 [(20  8.5) + (15  9.5) + (30  1.5)] ( ) = Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Using Break-Even Analysis Compare location alternatives on the basis of quantitative factors expressed in total costs – Determine the variable costs and fixed costs for each site – Plot total cost lines – Identify the approximate ranges for which each location has lowest cost – Solve algebraically for break-even points over the relevant ranges Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Example 11.3 An operations manager narrowed the search for a new facility location to four communities. The annual fixed costs (land, property taxes, insurance, equipment, and buildings) and the variable costs (labor, materials, transportation, and variable overhead) are as follows: CommunityFixed Costs per YearVariable Costs per Unit A$150,000$62 B$300,000$38 C$500,000$24 D$600,000$ Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Example 11.3 Step 1:Plot the total cost curves for all the communities on a single graph. Identify on the graph the approximate range over which each community provides the lowest cost. Step 2:Using break-even analysis, calculate the break-even quantities over the relevant ranges. If the expected demand is 15,000 units per year, what is the best location? Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Example 11.3 To plot a community’s total cost line, let us first compute the total cost for two output levels: Q = 0 and Q = 20,000 units per year. For the Q = 0 level, the total cost is simply the fixed costs. For the Q = 20,000 level, the total cost (fixed plus variable costs) is as follows: CommunityFixed Costs Variable Costs (Cost per Unit)(No. of Units) Total Cost (Fixed + Variable) A$150,000 B$300,000 C$500,000 D$600, Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Example 11.3 $62(20,000) = $1,240,000 $1,390,000 CommunityFixed Costs Variable Costs (Cost per Unit)(No. of Units) Total Cost (Fixed + Variable) A$150,000 B$300,000 C$500,000 D$600,000 $38(20,000) = $760,000$1,060,000 $24(20,000) = $480,000$980,000 $30(20,000) = $600,000$1,200, Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall To plot a community’s total cost line, let us first compute the total cost for two output levels: Q = 0 and Q = 20,000 units per year. For the Q = 0 level, the total cost is simply the fixed costs. For the Q = 20,000 level, the total cost (fixed plus variable costs) is as follows:

A best B best C best Example 11.3 The figure shows the graph of the total cost lines. |||||||||||| ,600 – 1,400 – 1,200 – 1,000 – 800 – 600 – 400 – 200 – – Annual cost (thousands of dollars ) Q (thousands of units) A B C D Break-even point (20, 980) (20, 1,390) (20, 1,200) (20, 1,060) A is best for low volumes B for intermediate volumes C for high volumes. We should no longer consider community D, because both its fixed and its variable costs are higher than community C’s Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall

Example 11.3 (A)(B) $150,000 + $62Q =$300,000 + $38Q Q = 6,250 units The break-even quantity between B and C lies at the end of the range over which B is best and the beginning of the final range where C is best. (B)(C) $300,000 + $38Q =$500,000 + $24Q Q = 14,286 units Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall The break-even quantity between A and B lies at the end of the first range, where A is best, and the beginning of the second range, where B is best.

Example 11.3 (A)(B) $150,000 + $62Q =$300,000 + $38Q Q = 6,250 units The break-even quantity between B and C lies at the end of the range over which B is best and the beginning of the final range where C is best. (B)(C) $300,000 + $38Q =$500,000 + $24Q Q = 14,286 units Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall The break-even quantity between A and B lies at the end of the first range, where A is best, and the beginning of the second range, where B is best. No other break-even quantities are needed. The break-even point between A and C lies above the shaded area, which does not mark either the start or the end of one of the three relevant ranges.

Locating a facility within a Supply Chain Network When a firm with a network of existing facilities plans a new facility, one of two conditions exists – Facilities operate independently – Facilities interact Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall