Destriping of VIIRS and MODIS SST imagery Marouan Bouali and Alexander Ignatov NOAA/NESDIS/STAR and CSU/CIRA 1 Workshop: “SST from polar orbiters: use.

Slides:



Advertisements
Similar presentations
SNPP VIIRS green vegetation fraction products and application in numerical weather prediction Zhangyan Jiang 1,2, Weizhong Zheng 3,4, Junchang Ju 1,2,
Advertisements

JPSS and GOES-R SST Sasha Ignatov
GHRSST XI Science Team Meeting, ST-VAL, June 2010, Lima, Peru Recent developments to the SST Quality Monitor (SQUAM) and SST validation with In situ.
VIIRS Reflective Solar On-orbit Calibration and Performance Jack Xiong and Jim Butler Code 618.0, NASA/GSFC, Greenbelt, MD CLARREO SDT Meeting, NASA.
VIIRS LST Uncertainty Estimation And Quality Assessment of Suomi NPP VIIRS Land Surface Temperature Product 1 CICS, University of Maryland, College Park;
Nares Strait Aug.-3, 2009 Level-1B 645nm.
Sirish Uprety a and Changyong Cao b a Perot Systems Government Services, Fairfax, VA, b NOAA/NESDIS/STAR, Camp Springs, MD, August 1, 2010.
Reduction of stripe noise in ACSPO clear-sky radiances and SST Marouan Bouali and Alexander Ignatov NOAA/NESDIS/STAR and CSU/CIRA 1 SPIE Security, Defense.
MCST – MODLAND Eric F. Vermote –MODLAND representative.
Scanner Characteristics
Satellite SST Radiance Assimilation and SST Data Impacts James Cummings Naval Research Laboratory Monterey, CA Sea Surface Temperature Science.
Green Vegetation Fraction (GVF) derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the SNPP satellite Zhangyan Jiang 1,2,
Xin Kong, Lizzie Noyes, Gary Corlett, John Remedios, Simon Good and David Llewellyn-Jones Earth Observation Science, Space Research Centre, University.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Determining the accuracy of MODIS Sea- Surface Temperatures – an Essential Climate Variable Peter J. Minnett & Robert H. Evans Meteorology and Physical.
Introduction Land surface temperature (LST) measurement is important for understanding climate change, modeling the hydrological and biogeochemical cycles,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 POES-GOES Blended SST Analysis.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 CLOUD MASK AND QUALITY CONTROL FOR SST WITHIN THE ADVANCED CLEAR SKY PROCESSOR.
MODIS Sea-Surface Temperatures for GHRSST-PP Robert H. Evans & Peter J. Minnett Otis Brown, Erica Key, Goshka Szczodrak, Kay Kilpatrick, Warner Baringer,
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
The University of Mississippi Geoinformatics Center NASA MRC RPC – 11 July 2007 Greg Easson, Ph.D. Robert Holt, Ph.D. A. K. M. Azad Hossain University.
NASA, CGMS-41, July 2013 Coordination Group for Meteorological Satellites - CGMS Calibration/validation of Operational Instruments at NASA Langley Research.
Real time Arctic SST retrieval from satellite IR data issues and solutions(?) Pierre Le Borgne, Gérard Legendre, Anne Marsouin, Sonia Péré, Hervé Roquet.
Satellite-derived Sea Surface Temperatures Corey Farley Remote Sensing May 8, 2002.
1 Center for S a t ellite A pplications and R esearch (STAR) Applicability of GOES-R AWG Cloud Algorithms for JPSS/VIIRS AMS Annual Meeting Future Operational.
AN ENHANCED SST COMPOSITE FOR WEATHER FORECASTING AND REGIONAL CLIMATE STUDIES Gary Jedlovec 1, Jorge Vazquez 2, and Ed Armstrong 2 1NASA/MSFC Earth Science.
USING OF METEOSAT SECOND GENERATION HIGH RESOLUTION VISIBLE DATA FOR THE IMPOVEMENT OF THE RAPID DEVELOPPING THUNDERSTORM PRODUCT Oleksiy Kryvobok Ukrainian.
Overview of the “Geostationary Earth Radiation Budget (GERB)” Experience. Nicolas Clerbaux Royal Meteorological Institute of Belgium (RMIB) In collaboration.
1 of 26 Characterization of Atmospheric Aerosols using Integrated Multi-Sensor Earth Observations Presented by Ratish Menon (Roll Number ) PhD.
Towards retrieving 3-D cloud fractions using Infrared Radiances from multiple sensors Dongmei Xu JCSDA summer colloquium, July August
EG2234: Earth Observation Interactions - Land Dr Mark Cresswell.
Evaluation of the Suomi NPP VIIRS Land Surface Temperature Product 1 CICS, University of Maryland, College Park; 2 STAR/NESDIS/NOAA Yuling Liu 1, Yunyue.
SST from Suomi-NPP VIIRS: Algorithm Development And Uncertainty Estimation Peter J Minnett, Robert H Evans, Kay Kilpatrick, Guillermo Podestá, Elizabeth.
1 RTM/NWP-BASED SST ALGORITHMS FOR VIIRS USING MODIS AS A PROXY B. Petrenko 1,2, A. Ignatov 1, Y. Kihai 1,3, J. Stroup 1,4, X. Liang 1,5 1 NOAA/NESDIS/STAR,
OSI-SAF VIIRS SST Pierre Le Borgne, Gérard Legendre, Anne Marsouin, Sonia Péré, Hervé Roquet Centre de Météorologie Spatiale, Météo-France, Lannion, France.
MODIS Collection 6 MCST Proposed Changes to L1B. Page 2 Introduction MODIS Collection History –Collection 5 – Feb present –Collection 4 – Jan.
VIIRS Product Evaluation at the Ocean PEATE Frederick S. Patt Gene C. Feldman IGARSS 2010 July 27, 2010.
RMIB involvement in the Geostationary Earth Radiation Budget (GERB) and Climate Monitoring SAF projects Nicolas Clerbaux Remote sensing from Space Division.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Data acquisition From satellites with the MODIS instrument.
Jun Li 1, Zhongdong Yang 1, W. Paul Menzel 2, and H.-L. Huang 1 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), UW-Madison 2 NOAA/NESDIS/ORA.
Radiometric Comparison between Suomi NPP VIIRS and AQUA MODIS using Extended Simultaneous Nadir Overpass in the Low Latitudes Sirish Uprety a Changyong.
Preliminary results from the new AVHRR Pathfinder Atmospheres Extended (PATMOS-x) Data Set Andrew Heidinger a, Michael Pavolonis b and Mitch Goldberg a.
1 GLIMPSING THE FIRST PRODUCTS FROM VIIRS Dr. Wayne Esaias NASA GSFC Thomas F. Lee Jeffrey Hawkins Arunas Kuciauskas Kim Richardson Jeremy Solbrig Naval.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
GHRSST –X Science Team Meeting Santa Rosa, California, USA 1-5 June 2009 The NPP/NPOESS VIIRS SST Mission Peter J. Minnett & Robert H. Evans Rosenstiel.
NASA, CGMS-44, 7 June 2016 Coordination Group for Meteorological Satellites - CGMS LIMB CORRECTION OF POLAR- ORBITING IMAGERY FOR THE IMPROVED INTERPRETATION.
Assessment on Phytoplankton Quantity in Coastal Area by Using Remote Sensing Data RI Songgun Marine Environment Monitoring and Forecasting Division State.
Collect 5 Calibration Issues Chris Moeller and others Univ. Wisconsin March 22, 2005.
RECONSTRUCTION OF MULTI- SPECTRAL IMAGES USING MAP Gaurav.
International GHRSST User Symposium Santa Rosa, California, USA 28-29th May 2009 MODIS Sea-Surface Temperatures Peter J Minnett & Robert H. Evans With.
MODIS and VIIRS Sea-Surface Temperatures: Validation of continuity products Kay Kilpatrick and Peter J Minnett Susan Walsh, Elizabeth Williams, Goshka.
Aqua-MODIS and VIIRS DCC calibration
Monitoring of SST Radiances
Joint GRWG and GDWG Meeting February 2010, Toulouse, France
SST – GSICS Connections
Aisheng Wua, Jack Xiongb & Changyong Caoc  
Extending DCC to other bands and DCC ray-matching
MODIS and VIIRS Reflective Solar Bands Calibration Methodologies and
An Overview of MODIS Reflective Solar Bands Calibration and Performance Jack Xiong NASA / GSFC GRWG Web Meeting on Reference Instruments and Their Traceability.
MODIS Lunar Calibration Data Preparation and Results for GIRO Testing
Requirements for microwave inter-calibration
MODIS Characterization and Support Team Presented By Truman Wilson
Hyperspectral Wind Retrievals Dave Santek Chris Velden CIMSS Madison, Wisconsin 5th Workshop on Hyperspectral Science 8 June 2005.
Using the Moon for Sensor Calibration Inter- comparisons
Radiometric Consistency between AVHRR, MODIS, and VIIRS in SST Bands
Moving toward inter-calibration using the Moon as a transfer
Inter-calibration of the SEVIRI solar bands against MODIS Aqua, using Deep Convective Clouds as transfer targets Sébastien Wagner, Tim Hewison In collaboration.
Igor Appel Alexander Kokhanovsky
Moving toward inter-calibration using the Moon as a transfer
Presentation transcript:

Destriping of VIIRS and MODIS SST imagery Marouan Bouali and Alexander Ignatov NOAA/NESDIS/STAR and CSU/CIRA 1 Workshop: “SST from polar orbiters: use of NWP models” Centre de Météorologie Spatiale, Météo France, Lannion March 5-7, /4/2013Destriping VIIRS/MODIS SST

Motivation Native resolution SST imagery (≤1km) derived from whiskbroom scanners (MODIS, VIIRS) is affected with stripe noise 2 Sea Surface Temperatures (°C) Destriping VIIRS/MODIS SST Terra MODIS Aqua MODIS NPP VIIRS 3/4/2013 T L2_LAC_SSTA L2_LAC_SSTACSPO_V2.12_NPP_VIIRS_ _

Accuracy of SST retrieval 3 NPP VIIRS (0.75 km) Stripe noise in level 1B or SDRs BTs can lead to SST errors of up to ± 0.3K Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _

SST Fronts 4 NPP VIIRS (0.75 km) Sobel filter Striping introduces artificial structures and affects the analysis of thermal fronts (orientation, intensity and location) Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _

5 Prior to assimilating into UHR L4 SST, MODIS and VIIRS L2 SSTs should be destriped Destriping VIIRS/MODIS SST UHR L4 SST will be increasingly used as input in NWP models due to better weather prediction (LaCasse et al. 2008) ESA MEDSPIRATION NASA JPL MUR NASA JPL G1SST Ultra-High Resolution Level 4 SSTs 3/4/2013

Mitigation of striping 6  Currently, blackbody (BB) and space view (SV) are used for absolute BT calibration on a scan-by-scan basis  This practice ensures that sensor uniformity performance is within pre-launch specification BUT it does not guarantee full mitigation of striping effect  Post-processing of L1B (SDR) is required to generate improved L1B, from which SST products with improved image quality can be produced Destriping VIIRS/MODIS SST 3/4/2013

Destriping Literature 7  ~ 40 years of research (since Landsat MSS, 1972)  Techniques with potential for operational use are intended for highly pronounced stripe noise whereas,  Stripe noise in 11 & 12 µm bands (MODIS, VIIRS) is below 0.05 K..  No work has been done so far for stripe noise reduction in SST imagery other than…  Spatial smoothing of the atmospheric term in SST algorithm Destriping VIIRS/MODIS SST SST = a 0. BT 11 + a 1. BT 12 + a 2.SST ref.[(BT 11 -BT 12 ) * H](sec( Ɵ ) -1) Low signal-to-stripe noise ratio (SSNR) Low-pass filter 3/4/2013

Towards Operational Destriping 8 Requirements Automatic: Minimize supervision and algorithm tuning Robust: Maximize improvement of image quality, i.e., minimize:  Residual stripes  Distortion  Processing artifacts Fast: Suitable for real-time processing of satellite data. Destriping VIIRS/MODIS SST

Adaptive Destriping 9 Scene-based denoising algorithm based on  Directional Hierarchical Decomposition (DHD) using on a unidirectional quadratic variational model  Nonlocal filtering “Adaptive Reduction of Striping for Improved SST Imagery from S-NPP VIIRS”, JTech, 2013 (in review) Destriping VIIRS/MODIS SST 3/4/2013

Adaptive Destriping 10 Directional Hierarchical Decomposition Destriping VIIRS/MODIS SST Observed image (f) Horizontal gradient Vertical gradient 1 st guess “True Image” (u 0 ) 1 st guess noise (v 0 ) 3/4/2013 = +

Adaptive Destriping 11 Destriping VIIRS/MODIS SST u0u0u0u0 f-v 1 v0v0v0v0 v1v1v1v1 v2v2v2v2 v3v3v3v3 v4v4v4v4 v5v5v5v5 v6v6v6v6 f, Noisy image f-v 2 f-v 3 f-v 4 f-v 5 f-v 6 3/4/2013 Iteration #1 #2#3#4#5#6

Preliminary Results: Data 12  Data: 3 days of level 1B/SDR TOA calibrated BTs -Terra MODIS -Aqua MODIS -NPP VIIRS  Destriping algorithm applied to SST 3.7, 11 and 12µm  Destriped BTs used as input in ACSPO prior to cloud masking and SST production  Cloud mask and SST image quality compared with/without destriping Destriping VIIRS/MODIS SST 3/4/2013

SST image quality (0.75 km) 13 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs)

SST image quality (0.75 km) 14 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

SST Fronts (0.75 km) 15 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST Fronts (0.75 km) 16 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs) 3/4/2013

SST image quality (0.75 km) 17 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST image quality (0.75 km) 18 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

SST Fronts (0.75 km) 19 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST Fronts (0.75 km) 20 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

SST image quality (0.75 km) 21 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST image quality (0.75 km) 22 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

SST image quality (4 km) 23 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST image quality (4 km) 24 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

SST Fronts (4 km) 25 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

SST Fronts (4 km) 26 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

Impact on cloud mask 27 Destriping VIIRS/MODIS SST ACSPO_V2.12_NPP_VIIRS_ _ (from original SDRs) 3/4/2013

Impact on cloud mask 28 Destriping VIIRS/MODIS SST 3/4/2013 ACSPO_V2.12_NPP_VIIRS_ _ (from destriped SDRs)

Destriping performance 29 The Normalized Improvement Factor (NIF) quantifies the improvement in image quality Destriping VIIRS/MODIS SST Monitoring of the NIF index over a 3 day period indicates stable destriping performance (5% ≤ NIF ≤ 30%) 3/4/2013

Conclusion 30 Destriping VIIRS/MODIS SST  Stripe noise is clearly visible in MODIS and VIIRS level 2 SST and cloud mask  It introduces relative errors of up to 0.3 K at the pixel level .. and compromises downstream SST applications - classification/clustering, cloud mask, thermal fronts detection…  Downsampling SST from 1 km (or 0.75 km for VIIRS) to 2/4 km resolution does not really mitigate the problem…  On-orbit calibration/characterization can reduce striping but cannot remove it fully, due to numerous factors contributing to stripe noise  Scene-based post-processing to reduce stripe noise is the only practical approach for improved SST imagery 3/4/2013

Current status and future work 31 Currently Rotational buffer of destriped VIIRS SST SDRs (M12, M15, M16) Rotational buffer of ACSPO VIIRS SST with destriped BTs Future work Estimate SST coefficients from destriped BTs Generate ACSPO SST with new SST coefficients Evaluate quantitative impact on SST retrieval. Destriping VIIRS/MODIS SST 3/4/2013

Thank you! Questions? 323/4/2013Destriping VIIRS/MODIS SST

MODIS and VIIRS SST bands 33 Terra /Aqua MODIS Resolution at Nadir1 km FPA -> 10 Detectors S/MWIR λ (µm) NE∆T (K) Band Band Band LWIR λ (µm) NE∆T (K) Band K Band K Suomi NPP VIIRS Resolution at Nadir0.75 km FPA -> 16 Detectors S/MWIR λ (µm) NE∆T (K) M K LWIR λ (µm) NE∆T (K) M K M K Destriping VIIRS/MODIS SST 3/4/2013