Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels Han Zhu ( 朱涵 ) Physics Department, Princeton University National High Magnetic Field Laboratory, Florida State University G. Sambandamurthy, NHMFL/FSU&Princeton EE, now SUNY buffalo Pei-Hsun Jiang, NHMFL/FSU&Princeton EE R. M. Lewis, NHMFL/FSU, now U Maryland Yong Chen Princeton EE&NHMFL/FSU, now Purdue L. Engel NHMFL/FSU D. C. Tsui, Princeton EE L. N. Pfeiffer and K. W. West Bell Labs, Alcatel-Lucent
2D electron systems Al x Ga 1-x As GaAs 10~50 nm -Late 90’s, 10 m Integer Quantum Hall Effect Fractional Quantum Hall Effect Fractional Quantum Hall Effect of Composite Fermions Stripes, Bubbles, etc. Non-Abelian states -1980, 100 k m m -80’-90’, 1 m Electron mobility (cm 2 /Vs)
Lilly et al, ’99... CDW in Quantum Hall systems Landau Level filling ν> 4 Fogler et al. ’96, R. Moessner, and J. T. Chalker, 96’ 4 IQHE-Wigner Crsytal hard easy R_yy R_xx
Different viewpoints on the stripe phase Stripe crystal smectic nematic Also, elliptical Fermi surface... Oganesyan, Kivelson, Fradkin’01 A review available by Fogler in cond-mat...
Wigner crystal: Pinning modes B f pk is a measure of average pinning energy per electron; pinning energy lowers overall energy In high B, at low filling factors, electrons form a Wigner crystal
Microwave/rf measuring technique Stripe phase: anisotropic pinning mode Stripe phase in In-plane field: Turns resonances on and off Interpretation: pinning energy measured by resonance frequency Outline
W =78 m Metal-film coplanar waveguide Microwave/Rf spectroscopy Re( xx ) = (1/N Z 0 )ln(P/ P 0 ) E rf
stripe [110], “x”, “hard” [110], “y”, “easy” n = 2.6 cm -2 μ= 2.9 10 7 cm 2 /Vs T ~ 35 mK Predicted ν range: Shibata& Yoshioka, PRL ’01 Spectra 4<ν<5 bubble
[110], “x”, “hard” [110], “y”, “easy” Spectra 4<ν<5 : overview stripe bubble
DC experiments: Pan et al., PRL, ‘99 & PRL, ‘00; Lilly et al., PRL, ’99; Zhu et al., PRL, ‘02; Cooper et al., PRL, ‘04 etc. and more... Lilly et al., PRL, 1999 B ip ν =9/2 in B ip DC transport: R_xx R_yy y, [110] x, [110] (Finite thickness) B ip - induced anisotropy energy CDW picture Finite layer thickness Favors stripe Bip Jungwirth et al. PRB 99’; Stanescu et al. PRL 00’.
Rotator Probe for Microwave/Rf spectroscopy SampleFlexible transmission lineCoax cable B ip =0 stripes y, [110] x, [110] Four cases: _xx or _yy B ip || x or y
B ip brings up f pk of resonance in xx B ip =0 stripes x, [11 ̅ 0] y, [110] B ip B ip along y Resonance switches from xx to yy around B ip =1 T
B ip B ip along x B ip =0 stripes x, [11 ̅ 0] y, [110]
Peak Conductivity B ip y, [110] x, [110]
B ip Peak Frequency
K B Cooper et al.. Solid State Comm (2001) 30 nm QW, 2.7 /cm 2 Native Anisotropy not understood, weak, sample dependent Finite thickness B ip - induced anisotropy energy Calculated from CDW, finite layer thickness, Favors stripe B ip Jungwirth et al. PRB 99’; Stanescu et al. PRL 00’ Measured by us: Pinning energy anisotropy Disorder-carrier interaction, B ip dependent: increases with B ip Favors stripe | | B ip What can be determining the stripe orientation Pinning energy is relevant to determining stripe orientation!
Stripe phase resonance Hard direction 100 MHz, pinning mode interpretation Apply B ip : switches resonance direction f pk increase with B ip measure of pinning energy B ip along x xx yy Summary