Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.

Slides:



Advertisements
Similar presentations
H. Okamura, M. Matsubara, T. Nanba – Kobe Univ.
Advertisements

La1–xCaxMnO3; Saturation magnetization at 90 K.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Mechanism of the Verwey transition in magnetite Fe3O4
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Neutron and X-ray Scattering Studies of Spin, Charge and Orbital Order in TM Oxides Andrew Boothroyd Department of Physics, Oxford University magnetization.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Perovskite-type transition metal oxide interfaces
Lattice instability in frustrated systems Maxim Mostovoy MPI, Stuttgart Groningen, April 22, 2004 D. Khomskii, Cologne J. Knoester, Groningen R. Moessner,
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy J. Stöhr, NEXAFS SPECTROSCOPY,
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Temperature-dependent orbital degree of freedom of a bilayer manganite by magnetic Compton scattering Yinwan Li ANL/ UI Chicago P. A. Montano UIChicago/US.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
An Introduction to Fe-based superconductors
Materials 286K Class 12, Experimental techniques: Resistivity Ultrathin Bi films. “The onset of superconductivity in homogeneous.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Neutron Scattering Studies of Tough Quantum Magnetism Problems
1 BROOKHAVEN SCIENCE ASSOCIATES End-station for Soft X-ray Diffraction Microscopy Stuart Wilkins CMPMSD, BNL.
Self-Organizations in Frustrated Spinels Seung-Hun Lee National Institute of Standards and Technology.
Materials 286K Class 13, Local structure and structural effects in cuprates Right: (La,M) 2 CuO 4 superconducting T c : Composition.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
The Charge Transfer Multiplet program
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
The Structure and Dynamics of Solids
Emergent Nematic State in Iron-based Superconductors
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
Electrical Transport Properties of La 0.33 Ca 0.67 MnO 3 R Schmidt, S Cox, J C Loudon, P A Midgley, N D Mathur University of Cambridge, Department of Materials.
Flat Band Nanostructures Vito Scarola
Evolution of the orbital Peierls state with doping
M. Hennion, S. Petit, F. Moussa, D. Lamago LLB-Saclay
Hyperfine interaction studies in Manganites
Jahn-Teller distortion in manganites
Anomalous Dome-like Superconductivity in RE2(Cu1-xNix)5As3O2 (RE = La, Pr, Nd)  Xu Chen, Jiangang Guo, Chunsheng Gong, Erjian Cheng, Congcong Le, Ning.
Presentation transcript:

Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National Taiwan University 1. Introduction to double-exchange interaction (DE) 2. Introduction to charge ordering 3. Introduction to orbital ordering and orbital dynamics 4. Interplay between double-exchange interaction, charge ordering, and orbital ordering

Double-exchange interaction La 1-x D x MnO 3 D: divalent elements 3-d La n(1-x) Sr 1+nx Mn n O 3n+1 n = # of layers. 2-d

Phase diagram OOI

CMR: Temperature Dependence The electrical resistance depends strongly on applied magnetic field. As the temperature is increased through the ferromagnetic Curie temperature Tc, the MR ration rises sharply.

Manganites Structure LaMnO 3 La +3 Mn +3 O -2 3 Mn +3 3d 4 xy, yz, zx orbitals form t 2g band, localized spin 3/2 x 2 -y 2, 3z 2 -r 2 form e g band, mobile spin 1/2 S=3/2+1/ doping----- La 1-x Ca x MnO 3 La +3 Ca +2 Mn +4 O +2 3 Mn +3 3d 4 xy, yz, zx orbitals form t 2g band, localized spin 3/2 S=3/2.

atom Crystal field e g t 2g Jahn-Teller distortion x 2 -y 2 3z 2 -r 2 xy xz, yz  Mn YT

Zener, Anderson, Hasegawa: Double-Exchange interaction

Mean field picture

Recent Development (PRB 64,054406(2001)) From the point of view of the total spin on a site. |S=3/2,m> and |1/2,+1/2>  |S=2,m+1/2> |S=3/2,m> and |1/2,-1/2>  |S=2,m-1/2>

Slave fermion Schwinger bosons Finally combine α or β with the localized spin.

Similar to one-magnon process.

Saito, et. al., PRB 62,1039 (2000). Experimental results II: ARPES shape of Fermi edge (1) Different from that of Gold (metal). (2) Temperature sensitive

f f f f f f f ff

Charge ordering Many compounds cuperates manganites magnetites

Nd doped La 2-x Sr x CuO 4 (Niemoller et. al.) ac-plane, Stripe in b-directuion

Charge-ordered stripes seen in La 0.33 Ca 0.67 MnO 3 by Uehara, Mori, Chen and Cheong, Nature399, 560 (1999).

DV 2 O 4 D: divalent elements New J. Phys. 7, 53. Radaelli PRL Tchernyshyov

cubic to monoclinic Miles, et. al. Rev. Mod. Phys. 29, 279 Orbital ordering Fe 3 O 4 Verway transition

O O -2 O A-type: 1/3 Fe +2 O B-type: 1/3 Fe +2 O B-type: 1/3 Fe +3

Orbital ordering Manganite, Spinel (AB 2 X 4, MgTi 2 O 4, FeSc 2 S 4 ), R 1-x A x TiO 3, TiOX (X=Cl,BR), V 2 O 3, LiNiO 2, NaTiO 2, Ca 3 Ru 2 O 7, KCuF 3, Fe 3 O 4,

Fe 3 O 4 PRL 93, Jen, Guo, Huang PRB 66, Wright, Attfield, Radaelli

z-direction t z x, y-direction t x(y) (PR. 93, Slater, Koster) simple cubic lattice Interplay between DE and OO

La 0.5 Ca 0.5 MnO 3 La 0.5 Sr 1.5 MnO 4 PR 100, 545. Wollen, Koehler PR 100, 564. Goodenough  : Mn 4+,  : spin, lobes: orbitals of Mn 3+

Summary 1. A lot of interesting phenomena. 2. Orbital dynamics is simple. 3. With the new form of DE, the system seems to be managable.

PRL Kim et. al.

PRL. 81, 1517 x=0.3 Feathures: Drude peak and broad peak

polaron? small polaron large polaron

orbital? PRB. 58, Kilian and Khaliulin J. Phys. Soc. Jpn. Shiba et. al.

Probing the orbital ordering Resonant x-ray scattering (RXS) : An Incident photon excites an electron to a higher level. The Electron emits a photon and falls to a lower state.

La 0.5 Sr 1.5 MnO 4 1s  4p (PRL 80, Murakami et. al.) 1. The energy of 4p state is affected by the electrons at 3d state. 2. The energies of 4p state of Mn 3+ and Mn 4+ are different. 3. Intensity varies with the direction of polarization due to the A  j coupling. 4. Incident photon:  polarization. z-axis: b direction. orbitals: y 2 -z 2 and x 2 -z 2.