Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La 1.875 Ba 0.125 CuO 4 Z. Guguchia, 1 R. Khasanov, 2 M. Bendele, 1 E. Pomjakushina,

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Photons muons neutrons Tuning the static spin-stripe phase and superconductivity in La 2-x Ba x CuO 4 (x = 1/8) by hydrostatic pressure Zurab Guguchia.
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
SDW Induced Charge Stripe Structure in FeTe
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
M. Hücker Manipulating Competing Order with High Pressure Neutron Scattering Group (CMPMS) Correlated Electron Systems ( Superconductivity, Magnetism,
Superconductivity in Zigzag CuO Chains
Physics 440 Condensed Matter Physics a.k.a. Materials Physics Solid-State Physics.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Prelude: Quantum phase transitions in correlated metals SC NFL.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
The attraction of  + to O 2- : using muons to study oxides Steve Blundell Clarendon Laboratory, Dept. Physics, University Of Oxford, UK.
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Muon Spin Rotation (µSR) technique and its applications in superconductivity and magnetism Zurab Guguchia Physik-Institut der Universität Zürich, Winterthurerstrasse.
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Michela Fratini Dipartimento di Fisica Università degli studi di Roma “La Sapienza” 6th INTERNATIONAL CONFERENCE OF THE STRIPES SERIES STRIPES 08 Quantum.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Magnetism in Azurite Studied by Muon Spin Rotation (a status report) M. Kraken, S. Süllow and F.J. Litterst IPKM, TU Braunschweig A.U.B. Wolter, IFW Dresden.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
NMR evidence for spatial correlations between spin and charge order in (La,Eu) 2-x Sr x CuO 4 Nicholas Hans-Joachim Grafe, Los Alamos.
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Critical Scaling of Jammed Systems Ning Xu Department of Physics, University of Science and Technology of China CAS Key Laboratory of Soft Matter Chemistry.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
An Introduction to Fe-based superconductors
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Infrared and magneto- optical studies of topological insulators Saša V. Ðorđević Department of Physics.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
D :06–4:18 PM Physikon Research  Notre Dame  Arizona State  NJIT Isotope Effect in High-T C Superconductors Dale R. Harshman Physikon Research.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Emergent Nematic State in Iron-based Superconductors
Physics Department, Technion, Israel Meni Shay, Ort Braude College, Israel and Physics Department, Technion, Israel Phys. Rev. B.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
ARPES studies of unconventional
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
UC Davis conference on electronic structure, June. 2009
Yoshida Lab Tatsuo Kano
Deformation of the Fermi surface in the
Presentation transcript:

Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La Ba CuO 4 Z. Guguchia, 1 R. Khasanov, 2 M. Bendele, 1 E. Pomjakushina, 3 K. Conder, 3 A. Shengelaya, 4 and H. Keller 1 1 Physik-Institut der Universität Zürich, Switzerland 2 Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Switzerland 3 Laboratory for Developments and Methods, Paul Scherrer Institute, Switzerland 4 Department of Physics, Tbilisi State University, Georgia Tbilisi State University

Zurab Guguchia Physik-Institut der Universität Zürich, Switzerland Laboratory for Muon Spin Spectroscopy, Paul-Scherrer Institut, Switzerland Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La Ba CuO 4

Thank you! Markus Bendele Hugo Keller Laboratory for Muon Spin Spectroscopy (PSI) Rustem Khasanov Laboratory for Developments and Methods (PSI) Ekaterina Pomjakushina Kazimierz Conder Alexander Shengelaya Tbilisi State University

Outline Introduction  Stripe phase in cuprates.  Isotope effects.  Muon Spin Rotation (µSR) technique. Results  Oxygen Isotope Effect (OIE) on superconductivity in LBCO-1/8.  OIE on the static spin stripe order in LBCO-1/8.  Pressure effects in LBCO-1/8. Conclusions

Superconductivity in La 2-x Ba x CuO 4 Moodenbaugh et al, Phys. Rev. B 38, 4596 (1988). Axe et al, Phys. Rev. Lett. 62, 2751 (1989). Hücker et al, Phys. Rev. B 83, (2011).

Experimental evidence for static stripes in La 1.48 Nd 0.4 Sr 0.12 CuO 4 Neutron Scattering Tranquada et al, Nature (London) 375, 561 (1995). Guguchia, PhD thesis,University of Zürich (2013). Real space Spin order Charge order M. Vojta, Adv. Phys. 58, 699 (2009) and references therein. T. Wu et. al., Nature 477, 191 (2011).

Central issues in Cuprates  What is microscopic origin of the stripe formation? The stripe phase may be caused by electronic and/or electron-lattice interaction.  Do stripes promote or inhibit superconductivity? Zaanen and Gunnarson Phys. Rev. B 40, 7391 (1989). White and Scalapino, PRL 80, 1272 (1998). Emery and Kivelson, Physica C 209, 597 (1993). M. Vojta, Adv. Phys. 58, 699 (2009). Do they contain all ingredients required for stripe formation?

Superconductivity in La 2-x Ba x CuO 4 Moodenbaugh et al, Phys. Rev. B 38, 4596 (1988) < x ≤ 0.13 Axe et al, Phys. Rev. Lett. 62, 2751 (1989). Hücker et al, Phys. Rev. B 83, (2011).

Experimental evidence for static stripes: Neutron Scattering Tranquada et al, Nature (London) 375, 561 (1995). Zaanen and Gunnarson, PRB 40, 7391 (1989). White and Scalapino, PRL 80, 1272 (1998). La 1.48 Nd 0.4 Sr 0.12 CuO 4 Momentum space Real space Spin peaks Charge peaks

Central issues in Cuprates  What is microscopic origin of the stripe formation?  Do stripes promote or inhibit superconductivity?

Early stripe predictions Zaanen and Gunnarson Phys. Rev. B 40, 7391 (1989) Hubbard model Mean-field solution White and Scalapino, PRL 80, 1272 (1998) t-J model Density matrix renormalization group

Alternative: Frustrated Phase Separation Löw, Emery, Fabricius, and Kivelson, PRL 72, 1918 (1994) Competing interactions result in striped and checkerboard phases Analysis of t-J model by Emery and Kivelson: Holes tend to phase separate! t-J model lacks long-range part of Coulomb interaction Long-range Coulomb repulsion frustrates phase separation

Holes in an AF : Why Do Stripes Occur? PHASE SEPARATION Coulomb Interactions Kinetic Energy Frustration STRIPES Emery and Kivelson Physica C 209, 597 (1993). The investigated models do not contain all ingredients required for stripe formation!

Stripe order in La Ba CuO 4 M. Hücker et al., Phys. Rev. B 83, (2011). Z. Guguchia et al., New Journal of Physics 15, (2013). Maisuradze and Guguchia, University of Zurich.

V sc (0) + V m (0) ≈ 1 Superconductivity and magnetism are competing order parameters. Phase diagrams Z. Guguchia et al., New Journal of Physics 15, (2013).

Diamond anvil cell for high-pressure magnetization measurements Maisuradze and Guguchia, University of Zurich.

Superconducting properties of La Ba CuO 4 Z. Guguchia et al., New Journal of Physics 15, (2013).

Hücker et al, PRL 104, (2010).

Double wall piston-cylinder type of cell made of MP35N material for µSR under pressure Andreica, Ph.D. thesis, IPP/ETH-Zürich, (2001).

High pressure µSR experiments on La Ba CuO 4 Z. Guguchia et al., New Journal of Physics 15, (2013).

High pressure µSR experiments on La Ba CuO 4 T LTT = 0 Z. Guguchia et al., New Journal of Physics 15, (2013).

Conventional superconductivity Electron-phonon interaction BCS: Isotope effect: Ranges from in elemental metals Weak coupling BCS predicts a value of  = 0.5 C.A. Reynolds et. al., Phys. Rev. 78, 487 (1950). E. Maxwell, Phys. Rev. 78, 477 (1950). J. Bardeen et. al., Phys. Rev. 108, 1175 (1957).

Unconventional Oxygen Isotope effects (OIE’s) in cuprates J. Hofer et. al., PRL 84, 4192 (2000). K.A. Müller, J. Phys. Condens. Matter 19, (2007). H. Keller et. al., Materials today 11, 9 (2008). Shengelaya et. al, PRL 83, 24 (1999). Khasanov et. al., PRL 101, (2008). Lanzara et. al., J. Phys. Condens. Matter 11, L541 (1999). Rubio Temprano et. al., PRL 84, 1990 (2000). Zhech et. al., Nature 371, 681–683, 1994.

Isotope effect on T c near 1/8 M.K. Crawford et. al., Science 250, 1390 (1990). G.M. Zhao et. al., J. Phys.: Condens. Matter 10, 9055 (1998). J.P. Franck et. al., PRL 71, 283 (1993). J. Hofer et. al., PRL 84, 4192 (2000). B. Batlogg et. al., PRL 59, 912 (1987). G.Y. Wang et. al., PRB 75, (2007).

TRIUMF Muon-spin rotation (μSR) technique

Courtesy of H. Luetkens homogeneous amplitude → magnetic volume fraction frequency → average local magnetic field Damping → magnetic field distribution / magnetic fluctuations time (  s) μSR in magnetic materials inhomogeneous

Magnetization experiments Tranquada et. al., PRB 78, (2008). Li et. al., PRL 99, (2007). Z. Guguchia et al., New Journal of Physics 15, (2013). Z. Guguchia et al., Phys. Rev. Lett. (2014).

Magnetization experiments Tranquada et. al., PRB 78, (2008). Li et. al., PRL 99, (2007).

Isotope effect on T c in La Ba CuO 4 Z. Guguchia et al., Phys. Rev. Lett. (2014).

Oxygen Isotope effect on T so Z. Guguchia et al., Phys. Rev. Lett. (2014).

Oxygen Isotope effect on T so Z. Guguchia et al., Phys. Rev. Lett. (2014).

G.M. Luke et. al., Physica C 185-9, 1175 (1991). B. Nachumi et. al., PRB 58, 8760 (1998). Oxygen Isotope effect on T so Z. Guguchia et al., Phys. Rev. Lett. (2014).

+

OIE effect on T so and magnetic fraction V m Z. Guguchia et al., Phys. Rev. Lett. (2014).

Summary of the OIE studies on La Ba CuO 4 Give evidence for stripe-lattice coupling in cuprates. Superconductivity and stripe order are competing phenomena.

Pressure experiments with SQUID and µSR Z. Guguchia et al., New Journal of Physics 15, (2013). SQUID (Maisuradze and Guguchia) µSR ( R. Khasanov )

Pressure effect on static spin-stripe order in La Ba CuO 4 V sc (0) + V m (0) ≈ 1 Z. Guguchia et al., New Journal of Physics 15, (2013).

LTT structural phase under pressure Hücker et al, PRL 104, (2010).

Pressure effect on the isotope effect inLBCO-1/8

Conclusions  Large negative OIE’s were observed on T so and V m in La 2-x Ba x CuO 4 (x = 1/8).  Oxygen-isotope shifts of T c and T SO are sign reversed. Stripe order and superconductivity are competing orders.  The electron-lattice interaction is involved in the stripe formation and is a crucial factor controlling the competition between the stripe order and superconductivity.  A purely electronic mechanism can not explain the present isotope and pressure experiments!

Thank you very much for your attention! Thank you very much for your attention!

Superconducting properties of La Ba CuO 4 Diamond anvil cell for high- pressure measurements. Dr. A. Maisuradze, University of Zurich.

M. Hücker et. al., PRL 104, (2010).

B. Nachumi et. al., PRB 58, 8760 (1998).

T LTO→LTT ≈ 50 K T HTT→LTO ≈ 200 K

La 2-x Ba x CuO 4 La 1.8-x Eu 0.2 Sr x CuO 4 G.M. Luke et. al., Physica C , (1991). M. Hücker et. al., Physica C , 170(2007). LTT LTO