Pairing glue antiferromagnetism, polaron pseudogap High-Tc.

Slides:



Advertisements
Similar presentations
H. Okamura, M. Matsubara, T. Nanba – Kobe Univ.
Advertisements

Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Concepts in High Temperature Superconductivity
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Nodal gaps (LSCO) and Nodal kinks (Bi2212)
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Electronic structure of La2-xSrxCuO4 calculated by the
Complexity as a Result of Competing Orders in Correlated Materials. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville, TN, USA.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Competing Orders: speculations and interpretations Leon Balents, UCSB Physics Three questions: - Are COs unavoidable in these materials? - Are COs responsible.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Gordon Conference 2007 Superconductivity near the Mott transition: what can we learn from plaquette DMFT? K Haule Rutgers University.
Introduction to the phenomenology of HiTc superconductors.
How can we construct a microscopic theory of Fermi Arc? T.K. Ng HKUST July 4 th, 2011 @ QC11.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Last time: BCS and heavy-fermion superconductors Bardeen-Cooper Schrieffer (conventional) superconductors Discovered in 1911 by Kamerlingh-Onnes Fully.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Fermionic quantum criticality and the fractal nodal surface Jan Zaanen & Frank Krüger.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
‘Checkerboard’ Electronic Crystal State in Lightly-Doped Ca 2-x Na x CuO 2 Cl 2 Yuhki Kohsaka Curry Taylor J.C. Séamus Davis Cornell Tetsuo Hanaguri Yuhki.
Symmetry breaking in the Pseudogap state and Fluctuations about it Schematic Universal phase diagram of high-T c superconductors MarginalFermi-liquid Fermi.
Zheng-Yu Weng IAS, Tsinghua University
1 Quantum Choreography: Exotica inside Crystals Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory of Solids: Band Theory.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
ARPES studies of unconventional
Zlatko Tesanovic, Johns Hopkins University o Strongly correlated.
强关联电子体系 ― 现象、理论与计算略讲 周森 中国科学院理论物理研究所 2012 年 8 月 9 日 2012 年理论物理研究生暑期学校 凝聚态物理 ― 现象、理论与计算.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
ARPES studies of cuprates
Review on quantum criticality in metals and beyond
Search for Novel Quantum Phases in
Search of a Quantum Critical Point in High Tc Superconductors
Killing the Fermi surface: Some ideas on the strange metal, Fermi arcs and other phenomena T. Senthil (MIT) TS, ``Critical fermi surfaces and non-fermi.
Liquefying a gas by applying pressure
R. L. Greene Electron-doped Cuprates University of Maryland
第38回応用物理学科セミナー 日時: 11月8日(水) 16:10 – 17:40 場所:葛飾キャンパス研究棟8F第1セミナー室
Alvaro ROJO-BRAVO LPTMS URM 8626, Université Paris-Sud, Orsay, France
Liquefying a gas by applying pressure
Ginzburg-Landau theory
Presentation transcript:

pairing glue antiferromagnetism, polaron pseudogap High-Tc

How can we approach?

Mode coupling forward scattering (low energy) kink F2, ~15 meV? F0 Eliashberg function stronger doping dependence than in underdoped region? gap function in overdoped region pairing glue extract band dispersion and self energy, characteristic energy scale, near node

Bi2212 Inna laser ARPES (low energy) kink overdoped Bi2212 Yu laser ARPES, SSRL Eliashberg function overdoped Bi2212 Makoto laser ARPES gap function in overdoped region pairing glue extract band dispersion and self energy, characteristic energy scale, primarily near node

pseudogap compare normal, pseudogap, and superconducting state, primarily near AN; temperature dependence. Question: What symmetry is broken in PG state? density wave? (what is PG?) pseudogap How PG affects SC? simply competes? necessary for SC? PG + SC relation between stripe and pseudogap (and stripe & SC) stripe

pseudogap compare normal, pseudogap, and superconducting state. near antinode Bi2201 (doping dependence Makoto, La free JJ, disordered), SSRL Fermi Arc inna Na-CCOC Albert, ALS pseudogap Bi2212, (Bi2201) laser Inna, SSRL Makoto PG + SC LSCO, LBCO Yu ALS stripe

How the metallic band appears? Antiferromagnetism related to pseudogap, Mott insulator? polaron Mott physics? disorder? pseudogap? nodal gap Spectral weight transfer between coherent and incoherent part High energy anomaly Mottness, polaron near Mott insulator phase, or high energy scale

LSCO Yu, (NCCO) ALS? Antiferromagnetism Na-CCOC, LSCO Yu polaron Bi2212 Inna, Bi2201 JJ, laser ARPES LSCOYu, (Makoto), ALS? nodal gap NCCO, all cuprates ALS High energy anomaly Mottness, polaron near Mott insulator phase, or high energy scale (dz orbital) Ruihua

pairing glue antiferromagnetism, polaron pseudogap High-Tc The big big picture unconventional SCs: Pnictides Heavy Fermion Sr2RuO4 etc SC+CDW systems: TaS 2 BaPbBiO CDWs/SDWs /DWs: ReTe3 Pnictides AF+SC systems: Heavy Fermion Quantum criticality: Heavy Fermions Ruthenates Isostructural TMOs: Nickelates Ruthenates Manganites