AP Biology F 2 generation 3:1 75% purple-flower peas 25% white-flower peas Looking closer at Mendel’s work P 100% F 1 generation (hybrids) 100% purple-flower.

Slides:



Advertisements
Similar presentations
AP Biology Genetics & The Work of Mendel. AP Biology Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor.
Advertisements

Genetics & The Work of Mendel
Genetics & The Work of Mendel (Ch. 14)
SOLVING GENETICS PROBLEMS Biology Unit 6 Powerpoint #2 / Chapter 11 Mr. Velekei.
AP Biology Genetics & The Work of Mendel.
Genetics & The Work of Mendel HOMOLOGOUS CHROMOSOME Pairs of matching chromosomes, with one being inherited from each parent.
Genetics & The Work of Mendel Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented.
Regents Biology Genetics & The Work of Mendel.
Genetics Why do we look the way we do?
Genetics & The Work of Mendel
AP Biology Chapter 14. Mendel & Genetics.
AP Biology What is on the Pre Quiz  Phenotype vs. Genotype  Dominant vs. Recessive  Homozygous vs. Heterozygous  Basic Punnet Square problems.
1 Mendelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel Genetic Terminology Trait - any characteristic that can be passed from parent to offspring Heredity - passing of traits.
AP Biology Lecture #25 Mendel. Mendel & The Gene Idea.
Chapter 14~Mendel & The Gene Idea Gregor Mendel Modern genetics began in the mid- 1800s in an abbey garden, where a monk named Gregor Mendel documented.
Mendel, Genes, and Inheritance Chapter 12. Gregor Mendel Austrian Monk with a strong background in plant breeding and mathematics Using pea plants, found.
Pea plants have several advantages for genetics.
AP Biology March 15, 2012  BellRinger  List 5 examples of instances where you have observed evidence of inherited traits between parents and offspring.
MCC BP Based on work by K. Foglia Chapter 14. Mendel & Genetics.
Dihybrid Crosses and Law of Independent Assortment.
Chapter 14~Mendel & The Gene Idea Gregor Mendel Modern genetics began in the mid- 1800s in an abbey garden, where a monk named Gregor Mendel documented.
AP Biology Genetics & The Work of Mendel. AP Biology Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor.
Chapter 14: Genetics & The Work of Mendel
AP Biology Mendelian Genetics Genetics Unit. AP Biology History of Genetics : Gregor Mendel (Austrian monk) presented results of 10 years of experimentation.
Chapter 14: Mendel & The Gene Idea
Genetics & The Work of Mendel
Bi 2c Students know how random chromosome segregation explains the probability that a particular allele will be in a gamete. Bi2. g. Students know how.
D.N.A.
Mendel & The Gene Idea Why Mendel Chose Peas? Contrasting traits Contain both sexes (self poliniation) Genetically simple.
GENETICS GENETICS & THE WORK OF MENDEL Gregor Mendel  Modern genetics began in the mid- 1800s in an abbey garden, where a monk named Gregor Mendel documented.
Chapter 12.1 Mendelian Genetics Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented.
AP Biology Genetics & The Work of Mendel.
Genetics & The Work of Mendel Gregor Mendel  The Father of Genetics  Modern genetics began in the mid- 1800s in an abbey garden, where a monk named.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & Gregor Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Chapter 14. Mendel & Genetics
Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Presentation transcript:

AP Biology F 2 generation 3:1 75% purple-flower peas 25% white-flower peas Looking closer at Mendel’s work P 100% F 1 generation (hybrids) 100% purple-flower peas X true-breeding purple-flower peas true-breeding white-flower peas self-pollinate

What did Mendel’s findings mean?  Traits come in alternative versions  different alleles vary in the sequence of nucleotides at the specific locus of a gene  For each characteristic, an organism inherits 2 alleles, 1 from each parent  diploid organism - homologous chromosomes purple-flower allele & white-flower allele are two DNA variations at flower-color locus different versions of gene at same location on homologous chromosomes

AP Biology What did Mendel’s findings mean?  Some traits mask others  purple & white flower colors are separate traits that do not blend  purple x white ≠ light purple  purple masked white  dominant allele  functional protein  masks other alleles  recessive allele  allele makes a malfunctioning protein homologous chromosomes I’ll speak for both of us! wild type allele producing functional protein mutant allele producing malfunctioning protein

Genotype vs. phenotype  Difference between how an organism “looks” & its genetics  phenotype  description of an organism’s trait  the “physical”  genotype  description of an organism’s genetic makeup  Can represent alleles as letters  flower color alleles  P or p  true-breeding purple-flower peas  PP  true-breeding white-flower peas  pp F1F1 P X purplewhite all purple

Genotypes  Homozygous = same alleles = PP, pp  Heterozygous = different alleles = Pp homozygous dominant homozygous recessive heterozygous Pp x Pp Pp male / sperm P p female / eggs PPPpPp PpPppp

Test cross  Breed the dominant phenotype — the unknown genotype — with a homozygous recessive (pp) to determine the identity of the unknown allele pp P P pp P p PpPp PpPpPpPp PpPp 100% purple PpPp pp PpPp 50% purple:50% white or 1:1 pp OR

AP Biology Mendel’s 1 st law of heredity  Law of segregation  during meiosis, alleles segregate  homologous chromosomes separate  each allele for a trait is packaged into a separate gamete PP P P pp p p PpPp P p

AP Biology Dihybrid cross  Other of Mendel’s experiments followed the inheritance of 2 different characters  seed color and seed shape  dihybrid crosses

AP Biology Dihybrid cross true-breeding yellow, round peas true-breeding green, wrinkled peas x YYRRyyrr P 100% F 1 generation (hybrids) yellow, round peas Y = yellow R = round y = green r = wrinkled self-pollinate 9:3:3:1 9/16 yellow round peas 3/16 green round peas 3/16 yellow wrinkled peas 1/16 green wrinkled peas F 2 generation YyRr

AP Biology What’s going on here?  If genes are on different chromosomes…  how do they assort in the gametes?  together or independently? YyRr YRyr YyRr YryRYRyr Is it this?Or this?

AP Biology Dihybrid cross YyRr YRYryR yr YR Yr yR yr YYRR x YYRrYyRRYyRr YYRrYYrrYyRrYyrr YyRRYyRryyRRyyRr YyRrYyrryyRryyrr 9/16 yellow round 3/16 green round 3/16 yellow wrinkled 1/16 green wrinkled YyRr YryRYR yr YyRr YRyr or

Mendel’s 2 nd law of heredity Law of Independent Assortment Law of independent assortment different loci (genes) separate into gametes independently non-homologous chromosomes align independently Metaphase 1 EXCEPTION  If genes are on same chromosome & close together  will usually be inherited together  rarely crossover separately  “linked”