Introduction to Evidential Reasoning Belief Functions.

Slides:



Advertisements
Similar presentations
FT228/4 Knowledge Based Decision Support Systems
Advertisements

Lahore University of Management Sciences, Lahore, Pakistan Dr. M.M. Awais- Computer Science Department 1 Lecture 12 Dealing With Uncertainty Probabilistic.
Bayesian Network and Influence Diagram A Guide to Construction And Analysis.
 Negnevitsky, Pearson Education, Lecture 3 Uncertainty management in rule- based expert systems n Introduction, or what is uncertainty? n Basic.
Rulebase Expert System and Uncertainty. Rule-based ES Rules as a knowledge representation technique Type of rules :- relation, recommendation, directive,
DETC06: Uncertainty Workshop; Evidence & Possibility Theories Evidence and Possibility Theories in Engineering Design Zissimos P. Mourelatos Mechanical.
PROBABILITY. Uncertainty  Let action A t = leave for airport t minutes before flight from Logan Airport  Will A t get me there on time ? Problems :
Hypothesis Testing making decisions using sample data.
Hypothesis Testing A hypothesis is a claim or statement about a property of a population (in our case, about the mean or a proportion of the population)
Uncertainty Everyday reasoning and decision making is based on uncertain evidence and inferences. Classical logic only allows conclusions to be strictly.
FT228/4 Knowledge Based Decision Support Systems
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Fuzzy Sets and Applications Introduction Introduction Fuzzy Sets and Operations Fuzzy Sets and Operations.
5/17/20151 Probabilistic Reasoning CIS 479/579 Bruce R. Maxim UM-Dearborn.
AI – CS364 Uncertainty Management Introduction to Uncertainty Management 21 st September 2006 Dr Bogdan L. Vrusias
Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of.
EPIDEMIOLOGY AND BIOSTATISTICS DEPT Esimating Population Value with Hypothesis Testing.
Chapter 4 Probability.
Dempster-Shafer Theory SIU CS 537 4/12/11 and 4/14/11 Chet Langin.
Information Fusion Yu Cai. Research Paper Johan Schubert, “Clustering belief functions based on attracting and conflicting meta level evidence”, July.
Lecture 05 Rule-based Uncertain Reasoning
Uncertainty Chapter 13.
Basic Concepts and Approaches
Bayesian Decision Theory Making Decisions Under uncertainty 1.
WORKSHOP “Applications of Fuzzy Sets and Fuzzy Logic to Engineering Problems". Pertisau, Tyrol, Austria - September 29th, October 1st, 2002 Aggregation.
Introduction to Probability n Experiments and the Sample Space n Assigning Probabilities to Experimental Outcomes Experimental Outcomes n Events and Their.
Fuzzy Logic. Lecture Outline Fuzzy Systems Fuzzy Sets Membership Functions Fuzzy Operators Fuzzy Set Characteristics Fuzziness and Probability.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
10.2 Tests of Significance Use confidence intervals when the goal is to estimate the population parameter If the goal is to.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Reasoning Under Uncertainty Artificial Intelligence Chapter 9.
From Rough Set Theory to Evidence Theory Roman Słowiński Laboratory of Intelligent Decision Support Systems Institute of Computing Science Poznań University.
On joint modelling of random uncertainty and fuzzy imprecision Olgierd Hryniewicz Systems Research Institute Warsaw.
Bayesian vs. frequentist inference frequentist: 1) Deductive hypothesis testing of Popper--ruling out alternative explanations Falsification: can prove.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
Introduction to Probability
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 30 Uncertainty, Fuizziness.
Estimating Component Availability by Dempster-Shafer Belief Networks Estimating Component Availability by Dempster-Shafer Belief Networks Lan Guo Lane.
Lógica difusa  Bayesian updating and certainty theory are techniques for handling the uncertainty that arises, or is assumed to arise, from statistical.
Uncertainty Management in Rule-based Expert Systems
Uncertainty. Assumptions Inherent in Deductive Logic-based Systems All the assertions we wish to make and use are universally true. Observations of the.
Uncertainty in Expert Systems
Statistical Decision Theory Bayes’ theorem: For discrete events For probability density functions.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
Please turn off cell phones, pagers, etc. The lecture will begin shortly. There will be a very easy quiz at the end of today’s lecture.
1 / 12 Michael Beer, Vladik Kreinovich COMPARING INTERVALS AND MOMENTS FOR THE QUANTIFICATION OF COARSE INFORMATION M. Beer University of Liverpool V.
Semantic Web Knowledge Fusion Jennifer Sleeman University of Maryland, Baltimore County Motivation Definitions Methodology Evaluation Future Work Based.
International Conference on Fuzzy Systems and Knowledge Discovery, p.p ,July 2011.
URBDP 591 I Lecture 4: Research Question Objectives How do we define a research question? What is a testable hypothesis? How do we test an hypothesis?
BIA 2610 – Statistical Methods
Textbook Basics of an Expert System: – “Expert systems: Design and Development,” by: John Durkin, 1994, Chapters 1-4. Uncertainty (Probability, Certainty.
1 Chapter 4, Part 1 Basic ideas of Probability Relative Frequency, Classical Probability Compound Events, The Addition Rule Disjoint Events.
UNIVERSITI TENAGA NASIONAL 1 CCSB354 ARTIFICIAL INTELLIGENCE Chapter 8.2 Certainty Factors Chapter 8.2 Certainty Factors Instructor: Alicia Tang Y. C.
Click to edit Master title style Click to edit Master subtitle style A PRACTICAL LOOK AT UNCERTAINTY MODELING Steve Unwin Risk & Decision Sciences Group.
1 Probability- Basic Concepts and Approaches Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
Which of Mill’s methods does research through controlled experimentation closely resemble?
REC 2008; Zissimos P. Mourelatos Design under Uncertainty using Evidence Theory and a Bayesian Approach Jun Zhou Zissimos P. Mourelatos Mechanical Engineering.
Text Classification with Belief Augmented Frames Colin Tan Department of Computer Science, School of Computing, National University of Singapore.
CHAPTER 5 Handling Uncertainty BIC 3337 EXPERT SYSTEM.
Introduction to Fuzzy Logic and Fuzzy Systems
Reasoning Under Uncertainty in Expert System
Uncertainty Chapter 13.
Basic Probabilistic Reasoning
Reasoning with Uncertainty
Reasoning with Uncertainty Piyush Porwal ( ) Rohit Jhunjhunwala ( ) Srivatsa R. ( ) Under the guidance of Prof. Pushpak Bhattacharyya.
What determines Sex Ratio in Mammals?
Mechanical Engineering Department
28th September 2005 Dr Bogdan L. Vrusias
Certainty Factor Model
Presentation transcript:

Introduction to Evidential Reasoning Belief Functions

Incompleteness: Combinatory John is married, but his wife's name is not given Combinatory All computer scientists like pizza, but their names are not available. Imprecision: Combinatory John's wife is Jill or Joan. Combinatory Jill is not John's wife. Interval theory Paul's height is between 170 and 180. Fuzzy sets Paul is tall. Possibility Theory the possibility for Paul's height to be about 175 cm. (physical form) Uncertainty: Probability Theory Upper-Lower Probabilities Possibility Theory the possibility that Paul's height is about 175 cm. (epistemic form) Subjective Probabilities Belief functions (Credibility) the chance of it being "heads" when tossing a coin. my degree of belief that cancer X is due to a virus. Ignorance Types

A somehow reliable witness testifies that the killer is a male. -Testimony reliability  -A priori equal belief that the killer is a male or a female. Is the killer Male? M = ‘the killer is a male’ A murder case Justified component of the probability given to M (called the belief or the support) aleatory component of that probability. Classical probability analysis P(M) = P(M/reliable)P(reliable) + P(M/¬reliable)P(¬reliable) P(M)=1x x0.3 = 0.85 Evidence Theory- DS Theory bel(M) = 0.7.

Bayesian approach Answering ‘‘what is the belief in A? as expressed by the unconditional probability that A is true given evidence, e ?’’ Assumption: precise probabilities can be assessed for all events. Too rare… Why believe one hypothesis other than that provided by the evidence?? The evidence have to be re-organised so that probabilities sum to unity. Pros -rules of probability calculus : uncontroversial, constant conclusions with the probability assessments. -Bayesian theory is easy to understand. Cons It is least suited to problems where there is -partial or complete ignorance -limited or conflicting information due to assumptions made(e.g. equi-probability) Cannot deal with imprecise, qualitative or natural language judgements such as ‘‘if A then probably B’’.

Dempster–Shafer approach Answering the question ‘‘what is the belief in A, as expressed by the probability that the proposition A is provable given the evidence?’’ An alternative to traditional probabilistic theory for the mathematical representation of uncertainty. Whereas a Bayesian approach assesses probabilities directly for the answer, the Dempster–Shafer approach assesses evidence for related questions. -combination of evidence obtained from multiple sources and the modeling of conflict between them. -Allocation of a probability mass to sets or intervals Pros -Ability to model various types of partial ignorance, limited or conflicting evidence -more flexible model than Bayes’ theorem. -computationally simpler than Bayes’ theorem. - No assumption regarding the probability of the individual constituents of the set or interval. -evaluation of risk and reliability in engineering applications when it is not possible to obtain a precise measurement from experiments, or when knowledge is obtained from expert elicitation. Cons -Can produce conclusions that are counter-intuitive. Dempster–Shafer is most suited to situations where beliefs are numerically expressed and where there is some degree of ignorance, i.e. there is an incomplete model.

Belief functions Ω the frame of discernment(elements of the set Ω are called ‘worlds’) One “actual world” ω 0. But which? An agent can only express the strength of his/her opinion (called degree of belief) that the actual world belongs to this or that subset of Ω. Shafer belief function bel : 2 Ω → [0, 1] bel(A) denotes the strength of Agent’s belief that ω 0  A. bel satisfies the following inequalities: Other useful functions (‘1-1’ with bel) 1.basic belief assignment (bba) m : 2 Ω → [0, 1] defined as: m(A) for A  Ω is called the basic belief mass (bbm) given to A. It may happen that m(  ) > 0. The relation from m to bel is given by: 2. plausibility function pl : 2 Ω → [0, 1] is defined as: Shafer : bel is ‘normalized’ => closed world assumption=> bel(Ω)=1, pl(Ω)=1,m(  ) = 0.

Entertained beliefs and beliefs in a decision context Uncertainty induces beliefs=“graded dispositions that guide our behavior” ‘rational’agent behavior described within decision contexts “It has been argued that decisions are ‘rational’ only if we use a probability measure over the various possible states of the nature and compute with it the expected utility of each possible act, the optimal act being the one that maximizes these expected utilities (DeGroot, 1970; Savage, 1954)”. beliefs can only be observed through our decisions=>use of probability functions to represent quantified beliefs 2 categories of beliefs:Entertained beliefs and beliefs in a decision context Entertained beliefs=>provide the quantified belief of the Agent (use of Justified Evidences) Beliefs in a decision context=>provide a method for rational decision making(probability function). Not supporting any strictly more specific propositions A basic belief mass given to a set A supports also that the actual world is in every subsets that contains A. The degree of belief bel(A) for A  quantifies the total amount of justified specific support given to A. We say justified because we include in bel(A) only the basic belief masses given to subsets of A. m({x,y}) given to {x,y} could support x if further information indicates this.However given the available information the basic belief mass can only be given to {x,y}. We say specific because the basic belief mass m(Ø) is not included in bel(A) as it is given to the subset Ø. Observations in belief functions

Dempster Rule of Combination Zadeh provides a compelling example of erroneous results. 1 patient with neurological symptoms, 2 physicians Doctor1: meningitis 0.99 brain tumor 0.01 Doctor2: concussion 0.99 brain tumor Using Dempster : m (brain tumor) = Bel (brain tumor) = 1 !!! Complete support for a very unlikely diagnosis problem when strongly conflicting evidence

System failure, 2 experts. Failure caused by Component A, B or C. Expert 1: m1(A) = 0.99 (failure due to Component A) m1(B) = 0.01 (failure due to Component B) Expert 2: m2(B) = 0.01 (failure due to Component B) m2(C) = 0.99 (failure due to Component C) Dempster’s Rule combination of the masses 1. To calculate the combined basic probability assignment for a particular cell, simply multiply the masses from the associated column and row. 2. Where the intersection is nonempty, the masses for a particular set from each source are multiplied, e.g., m12(B) = (0.01)(0.01) = Where the intersection is empty, this represents conflicting evidence and should be calculated as well. For the empty intersection of the two sets A and C associate with Expert 1 and 2, respectively, there is a mass associated with it. m1(A) m2(C)=(0.99)(0.99) =(0.9801). 4. Then sum the masses for all sets and the conflict. 5. The only nonzero value is for the combination of B, m12(B) = In this example there is only one intersection that yields B, but in a more complicated example it is possible to find more intersections to yield B. 6. For K, there are three cells that contribute to conflict represented by empty intersections. K = (0.99)(0.01) + (0.99)(0.01) + (0.99)(0.99) = Calculate the joint, m1(B) m2(B) = (.01)(.01) / [ ] =1 Bel (B) = 1!!! Problem of Dempster when highly conflicting evidence

Yager’s rule almost same matrix as Dempster’s rule. Exceptions in the nomenclature and allocation of conflict: 1. Ground probability assignments (q) instead of basic probability assignments (m) 2. q(Ø) instead of using K (but q(Ø)=K) Not normalization by factor (1-K). significant reduction of the value for Belief -> counterintuitive results sometimes large expansion of Plausibility. Inagaki’s Rule The matrix same as Dempster’s. -ground probability functions like Yager. m12(B) depends on the value of k which is now a parameter. k : experimentally or by expert expectation When k = 0 => Yager’s Rule. When k  1/(1  q(  )) => Dempster’s rule m12(B)  1, because sums of all masses must be equal to 1. k  =>  filtering of the evidence. Other combination Rules

Zhang’s Rule measure of intersection based on the cardinality of the sets. Problems with Zhang’s measure of intersection: 1. The equivalence with Dempster’s rule when the cardinality is 1 for all relevant sets or when the |C|=|A||B| in the circumstance of conflicting evidence. (This should not pose a problem if there is no significant conflict.) 2. If the cardinality of B was greater than 1, even completely overlapping sets will be scaled. Mixing The formulation for mixing in this case corresponds to the sum of m1(B)(1/2) and m2(B)(1/2). m12(A) = (1/2)(0.99) = m12(B) = (1/2)(0.01)+ (1/2) (0.01) = 0.01 m12(C) = (1/2)(0.99) = Dubois and Prade’s Disjunctive Consensus Pooling Unions of multiple sets Other combination Rules

Which model to use depends on the specific application