Congestive Cardiac Failure Dr. R. Senthil Kumar. Introduction to Heart Failure Heart unable to provide adequate perfusion of peripheral organs to meet.

Slides:



Advertisements
Similar presentations
© 2004 by Thomson Delmar Learning, a part of the Thomson Corporation. Fundamentals of Pharmacology for Veterinary Technicians Chapter 8 Cardiovascular.
Advertisements

Agents used in therapy of Congestive Heart Failure
Cardiac Drugs in Heart Failure Patients Zoulikha Zair 28 th May 2013 N.B. some drugs overlap with treatment of hypertension….bonus revision wise!!!!
Congestive Heart Failure
Antiarrhythmic Agents: Cardiac Stimulants and Depressants
Pharmacological Management of Congestive Heart Failure Dr. Naser Ashraf Department of Basic Medical Sciences College of Medicine Majmaah University.
Pharmacology DOR 101 Abdelkader Ashour, Ph.D. 9 th Lecture.
Drugs Used In the Treatment of Congestive Heart Failure(Cont) Garrett J. Gross, Ph.D. Drugs Used In the Treatment of Congestive Heart Failure(Cont) Garrett.
Heart Failure  CO  Sympathetic activity Vasoconstriction  Cardiac filling  Renin  Angiotensin II  Aldosterone Na +, water retention Cardiac remodeling.
1 Cardiac Pathophysiology Part B. 2 Heart Failure The heart as a pump is insufficient to meet the metabolic requirements of tissues. Can be due to: –
Diseases of the Cardiovascular System Ischemic Heart Disease – Myocardial Infartcion – Sudden Cardiac Death – Heart Failure – Stroke + A Tiny Bit on the.
Heart failure Results from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood to meet.
Cardiac drugs Cardiac glycoside Cardiac glycosides are the most effective drugs for treatment of C.H.F. Digitoxins are plant alkaloids. They increase myocardial.
Drugs for Heart Failure
Drugs for CCF Heart failure is the progressive inability of the heart to supply adequate blood flow to vital organs. It is classically accompanied by significant.
Heart Failure Heart Failure Heart failure, also called congestive heart failure, is a disorder in which the heart loses its ability to pump blood efficiently.
Pharmacotherapy of heart failure 台大藥理所 蘇銘嘉老師. Introduction Heart failure Etiology 1.Hypertension 2.Valvular disease 3.Congenital abnormalities 4.Ischemic.
Treatment of Heart Failure Claire Hunter, MD. Treatment of Heart Failure Goals Improve quality of life Prolong life Ejection fraction most important.
U 1. 2 CONGESTIVE HEART FAILURE Is a complex, progressive disorder in which the heart is unable to pump sufficient blood to meet the demands of the body.
Mosby items and derived items © 2011, 2007, 2004 by Mosby, Inc., an affiliate of Elsevier Inc. CHAPTER 22 Heart Failure Drugs.
Heart Failure.
Head Lines Etiology Risk factors Mechanism Complications Treatment.
Medical Progress: Heart Failure. Primary Targets of Treatment in Heart Failure. Treatment options for patients with heart failure affect the pathophysiological.
Drugs Used in Heart Failure
Drug Therapy Heart Failure by Pat Woodbery, MSN, ARNP.
OBJECTIVES At the end of lectures the students should Describe the different classes of drugs used for treatment of acute & chronic heart failure.
Drugs for Congestive Heart Failure
1 Drug Treatment of heart failure. Prof. Azza El-Medani Prof. Abdulrahman Almotrefi.
1 Drug Therapy of heart failure. Prof. Azza El-Medani Prof. Abdulrahman Almotrefi.
PROF. AZZA El-Medany Department of Pharmacology OBJECTIVES At the end of lectures the students should Describe the different classes of drugs used for.
TREATMENT OF CONGESTIVE HEART FAILURE (CHF) DIGITALIS GLYCOSIDES AND OTHER POSITIVE INOTROPIC AGENTS.
Drugs for Heart Failure Identify the major risk factors that accelerate the progression to heart failure. 2.Relate how the classic symptoms associated.
Mosby items and derived items © 2007, 2005, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. CHAPTER 21 Positive Inotropic Drugs.
Pharmacology of Heart failure
Nursing and heart failure
Bipyridines :(Amrinone,Milrinone ) only available in parenteral form. Half-life 3-6hrs. Excreted in urine.
Heart Failure Heart is unable to pump sufficient blood to meet the needs of the body. It is key symptoms are dyspnea, fatigue, fluid retention. HF is.
3/24/04 Cardiac Inotropic Drugs. 3/24/04 Pathogenesis of congestive heart failure A number of compensatory mechanisms come into play during the development.
Heart failure Heart failure, also called congestive heart failure, is a disorder in which the heart loses its ability to pump blood efficiently.
Prof. Azza Hafiz El-Medany Prof. Abdulrahman Al-Motrefi.
Drugs Affecting the Cardiovascular System. Cardiovascular System Z Muscular organ with 4 chambers Z Pumps 5-6 liters blood/minute.
Heart Failure. Introduction It is the inability of the heart to pump sufficient blood to meet body requirement. HF can be due to 1.Increased preload.
U 1. Cardiac failure Heart failure (HF) is a complex, progressive disorder in which the heart is unable to pump sufficient blood to meet the needs of.
Diuretics and Antihypertensives
أ. م. د. وحدة اليوزبكي Head of Department of Pharmacology- College of Medicine- University of Mosul-2014 Management of Heart Failure 2.
Drugs used for Congestive Heart Failure
– Dr. J. Satish Kumar, MD, Department of Basic & Medical Sciences, AUST General Medicine CVS Name:________________________________________ Congestive Heart.
Drug Therapy of Heart Failure Munir Gharaibeh, MD, PhD, MHPE Faculty of Medicine, The University of Jordan The University of Jordan November, 2015.
Heart Failure: medication Types of Heart Failure Systolic (or squeezing) heart failure –Decreased pumping function of the heart, which results in fluid.
Heart failure Congestive heart failure (CHF)= chronic heart failure Occurs when the heart is unable to pump sufficiently to maintain blood flow to meet.
PHARMACOLOGIC THERAPY  Standard First-Line Therapies Angiotensin-Converting Enzyme Inhibitors (ACEI) β Blockers Diuretics Digoxin  Second line Therapies.
Drug Therapy of Heart Failure Munir Gharaibeh, MD, PhD, MHPE Faculty of Medicine, The University of Jordan The University of Jordan November, 2014.
Heart Failure  Dfinition:  Clinical features  Underlying causes of HF include Arteriosclerotic heart disease, MI, hypertensive heart disease, valvular.
Drug acting on the Heart Heart failure. Lecture objectives At the end of the this lecture, the student will able to: Describe basic anatomy of the heart.
Result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood to meet the body's metabolic.
Drug Therapy of Heart Failure
Drugs Used to Treat Heart Failure
Drugs used for Congestive Heart Failure
Heart Failure (HF) Treatment
Prof. Abdulrahman Al-Motrefi
Drug acting on the Heart
Drugs for Heart Failure
Drugs Affecting the Cardiovascular System
Treatment of Congestive Heart Failure
Drug Therapy Heart Failure
CARDIOVASCULAR PHARMACOLOGY
Management of Heart Failure
Heart Failure (HF) Treatment
Anti hypertensive Drugs
Drugs Acting on the Heart
Presentation transcript:

Congestive Cardiac Failure Dr. R. Senthil Kumar

Introduction to Heart Failure Heart unable to provide adequate perfusion of peripheral organs to meet their metabolic requirements Characterized by: 1.Reduction in cardiac output 2.Increased TPR Progressing to congestive heart failure (CHF) is accompanied by peripheral and pulmonary edema.

Recent Advances Vs Reality Major advances in recent years in management of patients with CHF In 2000 an estimated 4.7 million people in the United States had HF The median survival after initial diagnosis is 1.7 years for men and 3.2 years for women. Sudden cardiac death is common in patients with heart failure, contributing to 50% of all 287,000 deaths in the United States last year

Acute Vs Chronic HF In a patient with acute heart failure, the short-term aim is stabilization by providing symptomatic treatment through intravenous interventions. Management of chronic heart failure is multifaceted, with the long-term aims of: relieving symptoms improving hemodynamics improving quality of life and decrease mortality.

Cardiac Vs Noncardiac targets Conventional belief that the primary defect in HF is in the heart Reality is that HF involves many other processes and organs Research has shown that therapy directed at noncardiac targets are more valuable than cardiac targets

Compensation in HF Heart failure is usually accompanied by an increase in: 1.Sympathetic nervous system (SNS) 2.Chronic up-regulation of the renin- angiotensin-aldosterone system (RAAS) and effects of aldosterone on heart, vessels, and kidneys. CHF should be viewed as a complex, interrelated sequence of events involving hemodynamic, and neurohormonal events.

Compensation contd.. In a failing heart, the loss of contractile function leads to a decline in CO and a decrease in arterial BP. Baroreceptors sense the hemodynamic changes and initiate countermeasures to maintain support of the circulatory system. Activation of the SNS serves as a compensatory mechanism in response to the earlier This helps maintain adequate cardiac output by: 1.Increasing myocardial contractility and heart rate (β 1 - adrenergic receptors) 2.Increasing vasomotor tone (α 1 -adrenergic receptors) to maintain systemic blood pressure

Consequences of hyperadrenergic state Over the long term, this hyperadrenergic state leads to irreversible myocyte damage, cell death, and fibrosis. In addition, the augmentation in peripheral vasomotor tone increases LV afterload This places an added stress upon the left ventricle and an increase in myocardial O 2 demand (ventricular remodeling). The frequency and severity of cardiac arrhythmias are enhanced in the failing heart

Figure p.203 kat

Pathophysiology CHF pathophysiology animation

Therapeutic Overview Problem Reduced force of contraction Decreased cardiac output Increased total peripheral resistance Inadequate organ perfusion Development of edema Decreased exercise tolerance Ischemic heart disease Sudden death Ventricular remodeling and decreased function

Goals and drug therapy Goals Alleviation of symptoms, improve quality of life Arrest ventricular remodeling Prevent sudden death Nondrug therapy Reduce cardiac work; rest, weight loss, low Na+ diet Drug therapy Chronic heart failure ACE-I, β-blockers, ARB, aldosterone antagonists, digoxin, diuretics Acute heart failure Intravenous diuretics, inotropic agents, PDE inhibitors, vasodilator

Signs and symptoms Tachycardia Decreased exercise tolerance & SOB Peripheral and pulmonary edema Cardiomegaly

Diuretics Bottom line: they decrease fluid volumes Four Flavours: Carbonic anhydrase inhibitors Loop diuretics Thiazide diuretics K + -sparing

Renin angiotensin system Baroreceptor mediated activation of the SNS leads to an increase in renin release and formation of angiotensin II Angiotensin II acts through AT 1 and AT 2 receptors (most of its actions occur through AT 1 receptors) This causes vasoconstriction and stimulates aldosterone production RAS remains the most important target of chronic CHF therapy

Effects of AT-II

MOA ACE-Inhibitors and ARB animation Blockade of ACE Decreased AT-II Decreased aldosterone Decreased fluid retention Vasodilation Reduced preload and afterload Slows cardiac remodeling

Advantages Improves symptoms significantly Improves exercise tolerance Slows progression of the disease Prolong survival in established cases

ADR What are the ADR of ACEIs? Cough (why?) Postural hypotention (why?) Hyperkalemia (possible Drug interactions?) Contraindicated in pregnant women (1 st trimester) Rare: angioedema

Other Vasodilators: Mechanism 2: Direct smooth muscle relaxants Nitrates Venous dilators Reduce preload Eg: sodium nitropruside

Inotropes Increase force of contraction All increase intracellular cardiac Ca ++ concentration Eg: Digitalis (cardiac glycoside) Dobutamine ( β-adrenergic agonist) Amrinone (PDE inhibitor)

Cardiac glycosides Digitalis Sourced from foxglove plant 1785, Dr. William Withering’s monograph on digitalis Has a profound effect on the cardiac contractility

Pck Two drugs (digoxin, digitoxin) Well absorbed orally 10% of population have bacteria in the gut, which inactivate digoxin, needing an increased dose in such Beware of using antibiotics in such patients Digoxin has a very narrow ther. Margin

Pck Taken orally Enters CNS (so what?) Renal clearance proportional to CC To be used with extreme caution in patients suffering from renal impairment

MOA Regulation of cytosolic Ca metabolism: Reversibly combine with sodium-potassium ATPase of the cardiac cell membrane Results in inhibition of pump activity This leads to in intracellular Na conc. This favors Ca ions in the cell Ca levels result in increased systolic force of contraction

Digoxin MOA

Na/K ATPase inhibition

Additional MOA Force of contraction resembles to that of the normal heart Improved circulation leads to reduced sympathetic activity This reduces PVR All this leads to reduction in HR Vagal tone is enhanced Finally myocardial O 2 demand is reduced

Electrophysiological effects on the heart

Uses Severe LV systolic dysfunction Only after initiation of diuretics and vasodialtor therapy Management of patients with chronic atrial fibrillation Cannot arrest the progression of pathological changes causing heart failure, and does not prolong life in patients with CHF

ADR Digitalis toxicity is one among most commonest encountered (why?) Therapeutic concentration ng/ml Often the first step is discontinuation of Rx Digoxin levels must be monitored closely

Signs of digoxin toxicity CNS: Malaise, confusion, depression, vertigo, vision (abnormalities in color vision) GI: Anorexia, nausea, intestinal cramping, diarrhea Cardiovascular: Palpitations, syncope, arrhythmias, bradycardia, AV node block, tachycardia

Factors increasing the possibility of digoxin toxicity Pharmacological and toxic effects are greater in hypokalemic patients. K + -depleting diuretics are a major contributing factor to digoxin toxicity.

Management  Arrhythmias may be converted to normal sinus rhythm by K +. when the plasma K + conc. is low or within the normal range.  When the plasma K + conc. is high, antiarrhythmic drugs, such as lidocaine, procainamide, or propranolol, can be used.  Severe toxicity treated with Digibind, an anti- digoxin antibody.

A 96-year-old AAF was admitted from a nursing home with complaints of abdominal pain, N/V, dizziness, confusion and double vision for 5 days. She was discharged from the hospital just 4 days ago. Digoxin was started during that previous hospitalization for control of tachycardia in atrial fibrillation. One day prior to discharge, digoxin level was 1.8 mg/mL and digoxin dose was decreased to 125 mcg PO Q 48 hr. PMH Hypertension, atrial fibrillation, coronary artery disease, stroke, congestive heart failure. Medications Metoprolol, Digoxin, ASA, lisinopril, Lasix, Coumadin, Nexium What could it be???

Dopamine Dopamine acts at a variety of receptors (dose dependant) Rapid elimination- can only be administered as a continuous infusion

Dobutamine Stimulates beta-adrenergic receptors and produces a positive inotropic response Unlike the vasoconstriction seen with high doses of dopamine, dobutamine produces a mild vasodilatation

MOA

PDE inhibitors Inamrinone (amrinone) and Milrinone (bipyridines) Acts by inhibiting the enzyme Phosphodiesterase Thus lead to increase of intracellular concentrations of cAMP cAMP is responsible for the conversion of inactive protein kinase to active form Protein kinases are responsible for phosphorylation of Ca channels Thus causing increased Ca entry into the cell.

MOA Increase myocardial contractility by increasing the Ca influx during AP Also have vasodilating effect Selective for PDE isoenzyme-3 (found in cardiac and smooth muscle)

Current status Both are orally active Only available in parenteral forms Limited efficacy Clinical trials- increased mortality (oral) Still new drugs are under trial

ADR Inamrinone: nausea, vomiting, arrhythmias, thrombocytopenia and liver enzyme changes Withdrawn in some countries Milrinone: arrhythmias, less likely to cause other ADR

(BNP)-Niseritide Brain (B-type) natriuretic peptide (BNP) is secreted constitutively by ventricular myocytes in response to stretch BNP binds to receptors in the vasculature, kidney, and other organs, producing potent vasodilation with rapid onset and offset of action by increasing levels of cGMP Niseritide is recombinant human BNP approved for treatment of acute decompensated CHF.

BNP contd.. It reduces systemic and pulmonary vascular resistances, causing an indirect increase in cardiac output and diuresis. Effective in HF because cause reduction in preload and afterload ADR- hypotension

Beta blockers Overwhelming evidence to support the use of β-blockers in CHF, however Mechanism involved remain unclear Part of their beneficial effects may derive from slowing of heart rate and decrease myocardial O 2 consumption. This would lessen the frequency of ischemic events and potential for development of a lethal arrhythmia.

Beta blockers Suggested mechanisms also include reduced remodeling β-Blockers may be beneficial through resensitization of the down-regulated receptor, improving myocardial contractility. Recent studies with bisoprolol, carvedilol and metoprolol showed a reduction in mortality in patients with these drugs CI in unstable cases

Management of Chronic HF (combination of drugs) Limit physical activity Reduce weight Reduce water intake Control HT Na restriction Diuretics ACE-Is Digitalis (ther. margin, DI with quinidine) Beta blockers Vasodilators

Management of acute HF Diuretics Vasodilators Inotropic drugs Life support Treating cause (surgery to correct valvular disorders)