BY: MIKE BASHAM, Math in Scheduling. The Bridges of Konigsberg.

Slides:



Advertisements
Similar presentations
CSE 211 Discrete Mathematics
Advertisements

22C:19 Discrete Math Graphs Fall 2010 Sukumar Ghosh.
Introduction to Graph Theory Instructor: Dr. Chaudhary Department of Computer Science Millersville University Reading Assignment Chapter 1.
Introduction to Graphs
Graph Theory: Euler Circuits Christina Mende Math 480 April 15, 2013.
1 Lecture 5 (part 2) Graphs II Euler and Hamiltonian Path / Circuit Reading: Epp Chp 11.2, 11.3.
Lecture 21 Paths and Circuits CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
Section 14.1 Intro to Graph Theory. Beginnings of Graph Theory Euler’s Konigsberg Bridge Problem (18 th c.)  Can one walk through town and cross all.
AMDM UNIT 7: Networks and Graphs
Euler Circuits and Paths
The Seven Bridges Of Konigsberg.
Koenigsberg bridge problem It is the Pregel River divided Koenigsberg into four distinct sections. Seven bridges connected the four portions of Koenigsberg.
Graph Theory. What is Graph Theory? This is the study of structures called ‘graphs’. These graphs are simply a collection of points called ‘vertices’
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 5 The Mathematics of Getting Around 5.1Euler Circuit Problems 5.2What.
An Euler Circuit is a cycle of an undirected graph, that traverses every edge of the graph exactly once, and ends at the same node from which it began.
IEOR266 © Classification of MCNF problems.
4/17/2017 Section 8.5 Euler & Hamilton Paths ch8.5.
Graphs. Graph A “graph” is a collection of “nodes” that are connected to each other Graph Theory: This novel way of solving problems was invented by a.
Euler and Hamilton Paths
Chapter 11 Graphs and Trees This handout: Terminology of Graphs Eulerian Cycles.
Euler Paths and Circuits. The original problem A resident of Konigsberg wrote to Leonard Euler saying that a popular pastime for couples was to try.
The Bridge Obsession Problem By Vamshi Krishna Vedam.
Copyright © Cengage Learning. All rights reserved.
Can you find a way to cross every bridge only once?
Take a Tour with Euler Elementary Graph Theory – Euler Circuits and Hamiltonian Circuits Amro Mosaad – Middlesex County Academy.
Chapter 15 Graph Theory © 2008 Pearson Addison-Wesley.
1 Excursions in Modern Mathematics Sixth Edition Peter Tannenbaum.
1 Starter of the day 23 x 27 = x 47 = x 87 = x 55 = x 58 = ???? 54 x 56 = ???? Can you spot the trick for this group of.
5.1  Routing Problems: planning and design of delivery routes.  Euler Circuit Problems: Type of routing problem also known as transversability problem.
Euler and Hamilton Paths
CS 200 Algorithms and Data Structures
5.4 Graph Models (part I – simple graphs). Graph is the tool for describing real-life situation. The process of using mathematical concept to solve real-life.
Lecture 14: Graph Theory I Discrete Mathematical Structures: Theory and Applications.
Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 4.1, Slide 1 4 Graph Theory (Networks) The Mathematics of Relationships 4.
Aim: What is an Euler Path and Circuit?
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 15 Graph Theory.
Lecture 10: Graph-Path-Circuit
Vertex-Edge Graphs Euler Paths Euler Circuits. The Seven Bridges of Konigsberg.
AND.
Associated Matrices of Vertex Edge Graphs Euler Paths and Circuits Block Days April 30, May 1 and May
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
Euler Paths and Circuits. The original problem A resident of Konigsberg wrote to Leonard Euler saying that a popular pastime for couples was to try.
MAT 2720 Discrete Mathematics Section 8.2 Paths and Cycles
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 15 Graph Theory.
Lecture 52 Section 11.2 Wed, Apr 26, 2006
Lecture 11: 9.4 Connectivity Paths in Undirected & Directed Graphs Graph Isomorphisms Counting Paths between Vertices 9.5 Euler and Hamilton Paths Euler.
Chapter 6: Graphs 6.1 Euler Circuits
Aim: Graph Theory – Paths & Circuits Course: Math Literacy Do Now: Aim: What are Circuits and Paths? Can you draw this figure without retracing any of.
Review Euler Graph Theory: DEFINITION: A NETWORK IS A FIGURE MADE UP OF POINTS (VERTICES) CONNECTED BY NON-INTERSECTING CURVES (ARCS). DEFINITION: A VERTEX.
M Clements Formal Network Theory. Introduction Practical problem – The Seven Bridges of Königsberg Network graphs Nodes & edges Degrees Rules/ axioms.
1) Find and label the degree of each vertex in the graph.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits.
Grade 11 AP Mathematics Graph Theory Definition: A graph, G, is a set of vertices v(G) = {v 1, v 2, v 3, …, v n } and edges e(G) = {v i v j where 1 ≤ i,
MAT 110 Workshop Created by Michael Brown, Haden McDonald & Myra Bentley for use by the Center for Academic Support.
Excursions in Modern Mathematics Sixth Edition
Excursions in Modern Mathematics Sixth Edition
Çizge Algoritmaları.
Euler and Hamiltonian Graphs
Data Structures Graphs - Terminology
Konigsberg’s Seven Bridges
Discrete Maths 9. Graphs Objective
Euler Paths and Circuits
Genome Assembly.
Excursions in Modern Mathematics Sixth Edition
Konigsberg- in days past.
Decision Maths Graphs.
Euler and Hamilton Paths
Section 14.1 Graphs, Paths, and Circuits
CHAPTER 15 Graph Theory.
Graphs, Paths, and Circuits
Presentation transcript:

BY: MIKE BASHAM, Math in Scheduling

The Bridges of Konigsberg

 In Konigsberg, Germany there was a river that ran through the city with an island in the middle of the river. Seven bridges were built on the river so people could easily get from one part to another. The people had wondered whether or not it was possible to get around the city in a way that would allow them to cross each of the seven bridges only once.

Euler’s Solution  Euler approaches this problem by labeling the sections of land separated by the water with capital letters. Mathematicians call this process, “labeling the vertices.” Vertices are the plural form of vertex, which is a point where two or more straight lines meet. In the figure shown below, the vertices are labeled by red dots and the edges are represented by the black lines. Euler solves this problem by drawing a figure similar to the one below without retracing any line, and making sure to keep his writing utensil on the paper.

DEFINITION: A NETWORK IS A FIGURE MADE UP OF POINTS (VERTICES) CONNECTED BY NON-INTERSECTING CURVES (ARCS). DEFINITION: A VERTEX IS CALLED ODD IF IT HAS AN ODD NUMBER OF ARCS LEADING TO IT, OTHER WISE IT IS CALLED EVEN. DEFINITION: AN EULER PATH IS A CONTINUOUS PATH THAT PASSES THROUGH EVERY ARC ONCE AND ONLY ONCE. Graph Theory

Graph Theory Continued… Theorem: If a network has more than two odd vertices, it does not have an Euler path. Theorem: If a network has two or zero odd vertices, it has at least one Euler path. In particular, if a network has exactly two odd vertices, then its Euler paths can only start on one of the odd vertices, and end on the other. Euler also provides these two rules.

 WHAT IS A CIRCUIT?  WHAT IS THE DIFFERENCE BETWEEN EULER AND HAMILTON’S CIRCUITS?  IS THE KONIGSBERG PROBLEM UNSOLVABLE? Circuits

What is a Circuit? Circuit- a circuit is a closed, simple path. Paths- a path in a graph is a sequence of vertices such that from each of its vertices there is an edge to the next vertex in the sequence. Edges- An edge is a line segment that joins two vertices. Vertices- A vertex (plural: vertices) is a point where two or more straight lines meet. Basically it’s a corner.

Euler’s Circuit A Eulerian circuit or Eulerian cycle is a path on a graph that starts and ends of the same vertex. A Eulerian Circuit uses each edge exactly once. Leonhard Euler first explored this idea in 1736 with his Seven Bridges of Konigsberg Problem. It is not a Eulerian Circuit unless all of it’s vertices have an even degree.

Fleury and Hierholzer’s Algorithm Leonhard Euler never developed an algorithm for his mathematical theory however there were two mathematicians that did. Hierholzer established his algorithm first in It is said to be the more efficient of the two. Fleury developed his algorithm in 1883, and although it recieves criticism, it is still a method that works.

Fleury’s Algorithm Consider a graph known to have all edges in the same component and at most two vertices of odd degree. We start with a vertex of odd degree—if the graph has none, then start with any vertex. At each step we move across an edge whose deletion would not disconnect the graph, unless we have no choice, then we delete that edge. At the end of the algorithm there are no edges left, and the sequence of edges we moved across forms an Eulerian cycle if the graph has no vertices of odd degree; or an Eulerian trail if there are exactly two vertices of odd degree.

Hierholzer’s Algorithm Choose any starting vertex v, and follow a trail of edges from that vertex until returning to v. It is not possible to get stuck at any vertex other than v, because the even degree of all vertices ensures that, when the trail enters another vertex w there must be an unused edge leaving w. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph. As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from v, following unused edges until returning to v, and join the tour formed in this way to the previous tour. By using a data structure such as a doubly linked list to maintain the set of unused edges incident to each vertex, to maintain the list of vertices on the current tour that have unused edges, and to maintain the tour itself, the individual operations of the algorithm (finding unused edges exiting each vertex, finding a new starting vertex for a tour, and connecting two tours that share a vertex) may be performed in constant time each, so the overall algorithm takes linear timedoubly linked listlinear time

Hamilton Circuit Hamilton circuits are named after the renowned Irish mathematician (and astonomer) Sir William Rowan Hamilton who lived from 1805 to Hamilton was a child prodigy. He could read English, Hebrew, Greek, and Latin by time he was four years old. In addition, he wrote poetry and maintained close friendships with Wordsworth and Coleridge. Hamilton became Professor of Astronomy at Trinity College in Dublin, Ireland when he was twenty-three years old. A circuit that starts at a vertex of a graph, passes through every vertex exactly once, and returns to the starting vertex is a HAMILTON CIRCUIT. If a graph contains a Hamiltonian circuit is it considered a Hamiltonian graph.

Dodecahedron (Hamiltonian Circuit)

Euler Circuits Hamiltonian Circuits All edges of graph are traversed exactly once. All vertices HAVE to be of even degree. In these circuits you only have to pass through every vertex once and end on the same vertex on which you started. The vertices do not need to be of even degree. The “Optimal Hamiltonian Path,” is that in which the least slides are used. The Difference Between Euler Circuits and Hamiltonian Circuits

Quick Examples to Practice

Can you take a walk through the town, visiting each part of the town and crossing each bridge only once?

To "visit each part of the town" the person taking the walk should visit the points A, B, C and D. And they should cross each bridge p, q, r, s, t, u and v just once.

It can be further simplified in a graph like this. See if you can solve it.

Why is the Konigsberg Problem Unsolvable?

Vertices A, B and D have degree 3 and vertex C has degree 5, so this graph has four vertices of odd degree. Therefore, it does not have an Euler Path. However, it does have a Hamiltonian Path.