1 Flavor effects on leptogenesis Steve Blanchet Max-Planck-Institut für Physik, Munich September 15, 2006 Neutrino Oscillation Workshop Conca Specchiulla,

Slides:



Advertisements
Similar presentations
Can we experimentally test seesaw and leptogenesis? Hitoshi Murayama (IPMU Tokyo & Berkeley) Melbourne Neutrino WS, Jun 4, 2008 With Matt Buckley.
Advertisements

Resonant Leptogenesis In S4 Model Nguyen Thanh Phong Cantho University In cooperation with Prof. CSKim, SKKang and Dr. YHAhn (work in progress)
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
Neutrino Mass Seesaw at the Weak Scale, the Baryon Asymmetry, and the LHC Z. Chacko University of Maryland, College Park S. Blanchet, R.N. Mohapatra.
Pasquale Di Bari (INFN, Padova) Melbourne Neutrino Theory Workshop, 2-4 June 2008 New Aspects ofLeptogenesis Neutrino Mass Bounds (work in collaboration.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
1 Affleck-Dine Leptogenesis induced by the Flaton of Thermal Inflation Wan-il Park KAIST Korea Advanced Institute of Science and Technology Based on JHEP.
PPC 2010, July, 2010 Interconnections among Baryo/Leptogenesis models Pasquale Di Bari TexPoint fonts used in EMF. Read the TexPoint manual before.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
Particle Physics and Cosmology
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Particle Physics and Cosmology
Radiative B Decays (an Experimental Overview) E.H. Thorndike University of Rochester CLEO Collaboration FPCP May 18, 2002.
CP VIOLATION in b → s l + l - Transition. Direct CP-Violation CP non-conservation shows up as a rate difference between two processes that are the CP.
Soft Leptogenesis in Warped Extra Dimensions Anibal D. Medina Department of Astronomy and Astrophysics The University of Chicago and Argonne National Laboratory.
Pasquale Di Bari (Max Planck, Munich) COSMO 06, Tahoe Lake, September 25-29, 2006 Flavor effects in leptogenesis Reference paper: S. Blanchet, PDB hep/ph.
Determining the Dirac CP Violation Phase in the PMNS Matrix from Sum Rules Arsenii Titov in collaboration with I. Girardi and S.T. Petcov SISSA and INFN,
Pasquale Di Bari (Max Planck, Munich) ‘The path to neutrino mass’, Aarhus, 3-6 September, 2007 Recent developments in Leptogenesis.
2-nd Vienna Central European Seminar, Nov 25-27, Rare Meson Decays in Theories Beyond the Standard Model A. Ali (DESY), A. V. Borisov, M. V. Sidorova.
1 Electroweak Baryogenesis and LC Yasuhiro Okada (KEK) 8 th ACFA LC workshop July 12, 2005, Daegu, Korea.
Nov.9, 2006, SNULeptogenesis & Triplet Seesaw1 Leptogenesis and Triplet Seesaw Eung Jin Chun KIAS TexPoint fonts used in EMF. Read the TexPoint manual.
Introduction to Flavor Physics in and beyond the Standard Model
International workshop on dark matter, dark energy and matter- antimatter asymmetry National Tsing Hua University ( 國立清華大學 ) 20–21 November 2009 Electromagnetic.
Shaving Type-I Seesaw Mechanism with Occam's Razor
QED at Finite Temperature and Constant Magnetic Field: The Standard Model of Electroweak Interaction at Finite Temperature and Strong Magnetic Field Neda.
Let us allow now the second heavy RH neutrino to be close to the lightest one,. How does the overall picture change? There are two crucial points to understand:
Pasquale Di Bari (INFN, Padova) Dark Matter from Heavy Right-Handed Neutrino Mixing (see A.Anisimov, PDB, arXiv: [hep-ph] ) NuHoRIzons 09 Harish-Chandra.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
1 Lepton Electric Dipole Moments in Supersymmetric Type II Seesaw Model Toru Goto, Takayuki Kubo and Yasuhiro Okada, “Lepton electric dipole moments in.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Physics 222 UCSD/225b UCSB Lecture 5 Mixing & CP Violation (1 of 3) Today we focus on Matter Antimatter Mixing in weakly decaying neutral Meson systems.
Anarchy, Neutrinoless double beta decay and Leptogenesis Xiaochuan Lu and Hitoshi Murayama NuFact 2013, Aug 22nd UC Berkeley.
1 Pasquale Di Bari (Max Planck, Munich) Università di Milano, February 8, 2007 Can neutrinos help to solve the puzzles of modern cosmology ?
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 11,
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Impact of Neutrino Oscillation Measurements on Theory Hitoshi Murayama NuFact 03 June 10, 2003.
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Why is there something rather than nothing
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Cosmological matter-antimatter asymmetry & possible CP violation in neutrino oscillations Zhi-zhong Xing (IHEP) International UHE Tau Neutrino Workshop.
1 Summary of the session: Interplay between neutrino masses and other phenomenological signatures Tommy Ohlsson Department of Theoretical Physics, Royal.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
Issues in Leptogenesis1 Eung Jin Chun Korea Institute of Advanced Study, Seoul APCTP, Yonsei, Sep. 15, 2007.
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Common problem against B and L genesis and its possible resolution M. Yoshimura Introduction 3 conditions for B asymmetry generation Sources of B non-conservation.
Neutrino physics: The future Gabriela Barenboim TAU04.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Leptogenesis beyond the limit of hierarchical heavy neutrino masses
Modeles Theoriques Andrea Romanino CERN.
Leptogenesis Parameterized by Lepton Mass Matrices
TeV-Scale Leptogenesis and the LHC
Matter vs. Antimatter The Question of Symmetry
On neutrinoless double beta decay in the nMSM
Electroweak Baryogenesis and LC
New aspects of leptogenesis
Natural expectations for…
Double beta decay and Leptogenesis
Constraints from LFV prosecces in the Higgs Triplet Model
TeV Leptogenesis in the Minimal Seesaw Model
Rome Samanta, University of Southampton
Presentation transcript:

1 Flavor effects on leptogenesis Steve Blanchet Max-Planck-Institut für Physik, Munich September 15, 2006 Neutrino Oscillation Workshop Conca Specchiulla, Otranto, Italy, Sep Based on: SB, P. Di Bari, hep-ph/

S. Blanchet, NOW 2006, Outline Review of unflavored leptogenesis and its implications Idea of how flavor enters leptogenesis General implications of flavor Specific example  Non-zero Majorana phases can lead to large effects Summary and conclusions

S. Blanchet, NOW 2006, Unflavored thermal leptogenesis Minimal extension of the SM The BAU can be generated because [Fukugita, Yanagida, 86] :  CP is violated in the decay of heavy neutrinos  Baryon number is violated in sphaleron processes  Decays are out of equilibrium at some point, parametrized by ``decay parameter´´ CP asymmetry parameter

S. Blanchet, NOW 2006, Unflavored thermal leptogenesis Notice how it is summed over the flavors The fundamental Boltzmann equations are  Strong wash-out when  Weak wash-out when CP violationOut-of-equilibrium condition Sphalerons conserve B-L !

S. Blanchet, NOW 2006, Unflavored thermal leptogenesis It is convenient to write the solution in the form where are the final efficiency factors. The final baryon asymmetry is given by and should be compared to the measured value [WMAP,06] Assuming one typically has a N 1 - dominated scenario.

S. Blanchet, NOW 2006, WEAK WASH-OUTSTRONG WASH-OUT

S. Blanchet, NOW 2006, From the upper bound on the CP asymmetry [Asaka et al., 01; Davidson, Ibarra, 02] one obtains a lower bound on M 1 and on the reheating temperature independent of the initial conditions [Davidson, Ibarra, 02; Buchmüller, Di Bari, Plümacher, 02] : The suppression of the CP asymmetry for growing absolute neutrino mass scale leads to a stringent upper bound [Buchmüller, Di Bari, Plümacher, 02] : Implications of unflavored leptogenesis

S. Blanchet, NOW 2006, How does flavor enter leptogenesis? Below some temperature ~ GeV, the muon and tauon charged lepton interactions are in equilibrium. These interactions are then fast enough to ‘measure’ the flavor of the state produced in the decay of the heavy neutrino; a 3-flavor basis is defined. [Barbieri, Creminelli, Strumia, Tetradis, 99 ; Endoh, Morozumi, Xiong, 03; Abada, Davidson, Josse-Michaux, Losada, Riotto, 06 ; Nardi, Nir, Racker, Roulet, 06]

S. Blanchet, NOW 2006, Second type of effect: additional contribution to the individual CP asymmetries: First type of effect: the rates of decay and inverse decay in each flavor are suppressed by the projectors How does flavor enter leptogenesis? The fundamental Boltzmann equations become Same as before! [Nardi et al., 06]

S. Blanchet, NOW 2006, NiNi L NO FLAVOR NjNj Φ Φ LeLe LμLμ LτLτ

S. Blanchet, NOW 2006, NiNi WITH FLAVOR (all projectors equal) NjNj Φ Φ LτLτ LeLe LμLμ

S. Blanchet, NOW 2006, Possible scenarios:  Alignment case [Nardi et al., 05]  Democratic (semi-democratic) case  One-flavor dominance General implications of flavor There exists an upper bound on the individual CP asymmetries [Abada, et al., 06] : and It does not decrease when the active neutrino mass scale increases! potentially big effect! like unflavored case factor 2-3 effect

S. Blanchet, NOW 2006, General implications of flavor Lower bounds 3x10 9 alignment democratic semi- democratic The lowest bounds independent of the initial conditions (K * ) do not change!

S. Blanchet, NOW 2006, General implications of flavor At fixed K 1, there is a relaxation of the lower bounds [Abada et al., 06]. How much? Factor 2-3 typically, but it depends on the projectors (could be much more!). However, the region of independence of initial conditions shrinks when the flavor effects increase (small projector, i.e. one-flavor dominance)

S. Blanchet, NOW 2006, Specific example Let us now study a specific case,, using the known information about the PMNS mixing matrix. For a fully hierarchical light neutrino spectrum one obtains a semi-democratic situation where For a real U PMNS and purely imaginary Semi-democratic

S. Blanchet, NOW 2006, Specific example: Majorana phase effects With ~ Semi-democratic One-flavor dominance With

S. Blanchet, NOW 2006, Summary of with purely imaginary Specific example: Majorana phase effects Case of real cf. talk by Petcov this morning

S. Blanchet, NOW 2006, Summary and conclusions Flavor effects can be important, but when they are, the region of the parameter space where leptogenesis does not depend on the initial conditions shrinks. The lower bounds on M 1 and T reh in the strong wash-out are not relaxed, but the bounds at fixed K are. The upper limit on m 1 seems to disappear when M 1 <10 12 GeV. Quantitatively, flavor effects yield O(1) modification of the usual results, except either when there is one-flavor dominance or when the total CP asymmetry vanishes. In both cases, Majorana phases play an important role. The one-flavor dominance seems to occur mainly when light neutrinos are quasi-degenerate. In conclusion, leptogenesis provides another phenomenology where Majorana phases matter.