The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea),

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

A method of finding the critical point in finite density QCD
A). Introduction b). Quenched calculations c). Calculations with 2 light dynamical quarks d). (2+1) QCD LATTICE QCD SIMULATIONS, SOME RECENT RESULTS (END.
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point November,
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
Fluctuations and Correlations of Conserved Charges in QCD Thermodynamics Wei-jie Fu, ITP, CAS 16 Nov AdS/CFT and Novel Approaches to Hadron and Heavy.
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
QCD Thermodynamics: Taylor expansion and imaginary chemical potential Rossella Falcone, Edwin Laermann, Maria Paola Lombardo Extreme QCD June.
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
1 Recent LGT results and their implications in Heavy Ion Phenomenology quark-gluon plasma hadron gas color superconductor Equation of state in LGT and.
Study of the critical point in lattice QCD at high temperature and density Shinji Ejiri (Brookhaven National Laboratory) arXiv: [hep-lat] Lattice.
QCD thermodynamics from lattice simulations an update using finer lattice spacings Péter Petreczky Physics Department and RIKEN-BNL WWND, February 2-7,
Wolfgang Cassing CERN, Properties of the sQGP at RHIC and LHC energies.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
The XXV International Symposium on Lattice Field Theory 29 July - 5 August 2007, Regensburg, Deutschland K. Miura, N. Kawamoto and A. Ohnishi Hokkaido.
Free Quarks versus Hadronic Matter Xiao-Ming Xu. picture below the critical temperature T c.
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Toward an Improved Determination of Tc with 2+1 Flavors of Asqtad Fermions C. DeTar University of Utah The HotQCD Collaboration July 30, 2007.
Third Moments of Conserved Charges as Probes of QCD Phase Structure Masakiyo Kitazawa (Osaka Univ.) M. Asakawa, S. Ejiri and MK, PRL103, (2009).
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Chiral Magnetic Effect on the Lattice Komaba, June 13, 2012 Arata Yamamoto (RIKEN) AY, Phys. Rev. Lett. 107, (2011) AY, Phys. Rev. D 84,
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Probability distribution of conserved charges and the QCD phase transition QCD phase boundary, its O(4) „scaling” & relation to freezeout in HIC Moments.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
ATHIC2008T.Umeda (Tsukuba)1 QCD Thermodynamics at fixed lattice scale Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration ATHIC2008, Univ. of Tsukuba,
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011)
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Third Moments of Conserved Charges in Phase Diagram of QCD Masakiyo Kitazawa (Osaka Univ.) M. Asakawa, S. Ejiri and MK, PRL103, (2009). Baryons’10,
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
Lattice 2012T. Umeda (Hiroshima)1 Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach Takashi Umeda (Hiroshima Univ.)
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Probing QCD Phase Diagram with Fluctuations of conserved charges Krzysztof Redlich University of Wroclaw & EMMI/GSI QCD phase boundary and its O(4) „scaling”
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Heavy Flavor Productions & Hot/Dense Quark Matter 1 Lattice calculations on Heavy flavor ~ Open and Hidden charm states above Tc ~ Takashi Umeda (BNL)
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
JPS2010springT. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の熱力学量の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Okayama.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
@ CPOD2011 Wuhan November 2011 Department of Physics, Osaka University Masayuki Asakawa Baryon Number Cumulants and Proton Number Cumulants in Relativistic.
Riken Lunch SeminarT.Umeda (BNL)1 Transition temperature and Equation of State from RBC-Bielefeld Collaboration Takashi Umeda (BNL) for the RBC - Bielefeld.
1 Chemical freezeout curve from heavy ion data coincides with freezeout T at RHIC and SPC J. Stachel & P. Braun- Munzinger.
Lattice QCD at finite density
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Lattice QCD and the strongly interacting matter Péter Petreczky Physics Department Zimányi School 2012 and Ortvay Colloquium, December 6, 2012, ELTE, Budapest.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
The QCD EoS from simulations on BlueGene L Supercomputer at LLNL and NYBlue Rajan Gupta T-8, Los Alamos National Lab Lattice 2008, College of William and.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Recent developments in lattice QCD Péter Petreczky
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
Deconfinement and Equation of State in QCD
Takashi Umeda (BNL) BNL Saumen Datta Christian Schmidt Frithjof Karsch
Study of the Finite Density State based on SU(2) Lattice QCD
Presentation transcript:

The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea), M. Döring, O.Kaczmarek, F.Karsch, E.Laermann (Bielefeld), K.Redlich (Bielefeld & Wroclaw) (Phys. Rev. D71, (2005) +  ) Quark Matter 2005, August 4-9, Budapest

Numerical Simulations of QCD at finite Baryon Density Boltzmann weight is complex for non-zero . –Monte-Carlo simulations: Configurations are generated with the probability of the Boltzmann weight. –Monte-Carlo method is not applicable directly. Reweighting method Sign problem 1, Perform simulations at  =0. for large  2, Modify the weight for non-zero .

Studies at low density Taylor expansion at  =0. –Calculations of Taylor expansion coefficients: free from the sign problem. –Interesting regime for heavy-ion collisions is low density. (  q /T~0.1 for RHIC,  q /T~0.5 for SPS) Calculation of thermodynamic quantities. –The derivatives of lnZ: basic information in lattice simulations. Quark number density: Quark number susceptibility: Chiral condensate: Higher order terms: natural extension.

Equation of State via Taylor Expansion Equation of state at low density ; quark-gluon gas is expected. Compare to perturbation theory Near ; singularity at non-zero  (critical endpoint). Prediction from the sigma model ; comparison to the models of free hadron resonance gas. QGP color super- conductor? hadron  T

Simulations We perform simulations for =2 at ma=0.1 (m  /m   0.70 at T c ) and investigate T dependence of Taylor expansion coefficients. Moreover, Taylor expansion coefficients of chiral condensate and static quark-antiquark free energy are calculated. Symanzik improved gauge action and p4-improved staggered fermion action Lattice size: Quark number susceptibility: Isospin susceptibility: Pressure:

Derivatives of pressure and susceptibilities Difference between and is small at  =0. –Perturbation theory: The difference is Large spike for, the spike is milder for iso-vector. at –Consistent with the perturbative prediction in.

Difference of pressure for  >0 from  =0 Chemical potential effect is small. cf. p SB /T 4 ~4 at  =0. RHIC : only ~1% for p. The effect from O(  6 ) term is small.

Quark number susceptibility and Isospin susceptibility Pronounced peak for around Critical endpoint in the (T,  ) ? No peak for Consistent with the prediction from the sigma model.

Chiral susceptibility Peak height increases as increases. Consistent with the prediction from the sigma model. (disconnected part only)

Comparison to hadron resonance gas model At, consistent with hadron resonance gas model. At, approaches the value of a free quark-gluon gas. Hadron resonance gas Free QG gas Hadron resonance gas prediction

Hadron resonance gas model for Isospin susceptibility and chiral condensate At, consistent with hadron resonance gas model. Hadron resonance gas Free QG gas Hadron resonance gas

Debye screening mass QQ free energy from Polyakov loop correlation Singlet free energy (Coulomb gauge) Averaged free energy where : Polyakov loop Assumption at T>T c Color-electric screening mass: perturbative prediction (T. Toimela, Phys.Lett.B124(1983)407) O.Kaczmarek and F.Zantow, Phys.Rev.D71 (2005)

Taylor expansion coefficients of screening mass Consistent with perturbative prediction

Summary Derivatives of pressure with respect to  q up to 6 th order are computed. The hadron resonance gas model explains the behavior of pressure and susceptibilities very well at. –Approximation of free hadron gas is good in the wide range. Quark number density fluctuations: A pronounced peak appears for. Iso-spin fluctuations: No peak for. Chiral susceptibility: peak height becomes larger as  q increases. This suggests the critical endpoint in plane? Debye screening mass at non-zero  q is consistent with the perturbative result for. To find the critical endpoint, further studies for higher order terms and small quark mass are required.