January 6, 20111 B Tagging in Jets at Hadron Colliders Matthew Jones Purdue University Heavy Quark Production in Heavy Ion Collisions Purdue University,

Slides:



Advertisements
Similar presentations
Reconstruction Charm and Bottom with the ALICE EMCAL
Advertisements

Search for Top Flavor Changing Neutral Current Decay t → qZ Ingyin Zaw DOE Review August 21, 2006.
Tau dilepton channel The data sample used in this analysis comprises high-p T inclusive lepton events that contain an electron with E T >20 GeV or a muon.
CDF でのWH  lνbb チャンネルを用い た ヒッグス粒子探索 Outline Introduction Analysis & Current Upper Limit on WH Conclusion & Tevatron Results 増渕 達也 筑波大学 February 21 th 2007.
BRING UP B-TAGGING AT DØ Gordon Watts (Seattle/Marseille)
Jet and Jet Shapes in CMS
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
1 Rare Decays of B Hadrons at CDF Matthew Jones October 3, 2005.
ICFP 2005, Taiwan Colin Gay, Yale University B Mixing and Lifetimes from CDF Colin Gay, Yale University for the CDF II Collaboration.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Top Turns Ten March 2 nd, Measurement of the Top Quark Mass The Low Bias Template Method using Lepton + jets events Kevin Black, Meenakshi Narain.
Kevin Black Meenakshi Narain Boston University
Top Physics at the Tevatron Mike Arov (Louisiana Tech University) for D0 and CDF Collaborations 1.
The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
On the Trail of the Higgs Boson Meenakshi Narain.
Alex Smith – University of Minnesota Determination of |V cb | Using Moments of Inclusive B Decay Spectra BEACH04 Conference June 28-July 3, 2004 Chicago,
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
MC Study on B°  J/  ° With J/      °     Jianchun Wang Syracuse University BTeV meeting 03/04/01.
Jake Anderson, on behalf of CMS Fermilab Semi-leptonic VW production at CMS.
Search for Anomalous tWb Couplings at D0, L. Li (Shanghai Jiao Tong University) SUSY 2012, August 16, Liang Li Shanghai Jiao Tong University Search.
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
Alexander Khanov 25 April 2003 DIS’03, St.Petersburg 1 Recent B Physics results from DØ The B Physics program in D Ø Run II Current analyses – First results.
1 g g s Richard E. Hughes The Ohio State University for The CDF and D0 Collaborations Low Mass SM Higgs Search at the Tevatron hunting....
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Irakli Chakaberia Final Examination April 28, 2014.
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
Performance of Track and Vertex Reconstruction and B-Tagging Studies with CMS in pp Collisions at sqrt(s)=7 TeV Boris Mangano University of California,
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
August 30, 2006 CAT physics meeting Calibration of b-tagging at Tevatron 1. A Secondary Vertex Tagger 2. Primary and secondary vertex reconstruction 3.
KIRTI RANJANDIS, Madison, Wisconsin, April 28, Top Quark Production Cross- Section at the Tevatron Collider On behalf of DØ & CDF Collaboration KIRTI.
Outline: Challenge of b-tagging at a hadron machine Lifetime-based b-tagging at CDF Measuring efficiency in the data Understanding contribution from non-b.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
LHC France 2013, 3 rd April ATLAS results on inclusive top quark pair production cross section in dilepton channel Frédéric Derue, LPNHE Paris Rencontres.
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
B-Tagging Algorithms for CMS Physics
DPF2000, 8/9-12/00 p. 1Richard E. Hughes, The Ohio State UniversityHiggs Searches in Run II at CDF Prospects for Higgs Searches at CDF in Run II DPF2000.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
Recent Open Heavy Flavor Results from ATLAS and CMS Experiment at LHC
Chunhui Chen, University of Pennsylvania 1 Heavy Flavor Production and Cross Sections at the Tevatron Heavy Flavor Production and Cross Sections at the.
Study of b quark contributions to non-photonic electron yields by azimuthal angular correlations between non-photonic electrons and hadrons Shingo Sakai.
B-Tagging at CDF and DØ Lessons for LHC Thomas Wright University of Michigan For the CDF and DØ Collaborations Hadron Collider Physics Symposium May 26,
Properties of B c Meson On behalf of DØ Collaboration Dmitri Tsybychev, SUNY at Stony Brook, PANIC05, Santa Fe, New Mexico B c is ground state of bc system.
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
Julien Donini University of Padova and INFN  Jet energy scale issues  Understanding our dataset  Z  bb signal extraction  What's next Tev4LHC at CERN.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
Single top quark physics Peter Dong, UCLA on behalf of the CDF and D0 collaborations Les Rencontres de Physique de la Vallee d’Aoste Wednesday, February.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
Moriond QCD March 24, 2003Eric Kajfasz, CPPM/D01 b-production cross-section at the TeVatron Eric Kajfasz, CPPM/D0 for the CDF and D0 collaborations.
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
B-Tagging Algorithms at the CMS Experiment Gavril Giurgiu (for the CMS Collaboration) Johns Hopkins University DPF-APS Meeting, August 10, 2011 Brown University,
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
Searches for Resonances in dilepton final states Searches for Resonances in dilepton final states PANIC th -14 th November 2008, Eilat, ISRAEL A.
Outline Heavy Flavor Production & Decay BB Oscillation Theory Experiment B Physics at PHENIX Summary & Conclusions 2.
B s Mixing Results for Semileptonic Decays at CDF Vivek Tiwari Carnegie Mellon University on behalf of the CDF Collaboration.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
DPF Conf., Oct. 29, 2006, HawaiiViktor Veszpremi, Purdue U.1 Search for the SM Higgs Boson in the Missing E T + b-jets Final State at CDF V. Veszpremi.
Studies of the Higgs Boson at the Tevatron Koji Sato On Behalf of CDF and D0 Collaborations 25th Rencontres de Blois Chateau Royal de Blois, May 29, 2013.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Suyong Choi (SKKU) SUSY Standard Model Higgs Searches at DØ Suyong Choi SKKU, Korea for DØ Collaboration.
Low Mass Standard Model Higgs Boson Searches at the Tevatron Andrew Mehta Physics at LHC, Split, Croatia, September 29th 2008 On behalf of the CDF and.
Heavy Flavour Content of the Proton
Top quark production cross section Top quark mass measurement
Outline Physics Motivation Technique Results
Measurement of b-jet Shapes at CDF
Presentation transcript:

January 6, B Tagging in Jets at Hadron Colliders Matthew Jones Purdue University Heavy Quark Production in Heavy Ion Collisions Purdue University, West Lafayette IN January 4-6, 2011

January 6, Disclaimer Results are primarily from the CDF experiment Most apply to high energy jets as in Z, H, t decay Performance limited by detector capabilities... New LHC experiments work exceptionally well! ANY MATERIALS ARE PROVIDED ON AN "AS IS" BASIS. MATTHEW JONES SPECIFICALLY DISCLAIMS ALL EXPRESS, STATUTORY, OR IMPLIED WARRANTIES RELATING TO THESE MATERIALS, INCLUDING BUT NOT LIMITED TO THOSE CONCERNING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, SUCH AS APPLICATION IN A HEAVY ION EXPERIMENT, OR NON-INFRINGEMENT OF ANY THIRD-PARTY RIGHTS REGARDING THE MATERIALS. VOID WHERE PROHIBITED BY LAW.

January 6, Typical Applications Cleanest environment at LEP, –measurement of –Electroweak couplings via A b FB –search for At the Tevatron, –b production cross sections –reconstruction of top decays, t  Wb –Higgs searches, –Single top production Typical jet energies are E T > 50 GeV These analyses generally require well-understood b-tag efficiencies (acceptance) and fake rates (backgrounds).

January 6, Properties of B Hadrons B hadrons have unique properties because: The b quark mass is large, –high multiplicity of decay products –decay products can have a hard momentum spectrum The CKM matrix element |V cb | is small, –Relatively long lifetime,

January 6, B Production in collisions Imprecise knowledge of initial state. Decay products of massive initial state.

January 6, Modeling B Production Accurate modeling of B production and decay is an essential tool –Allows development and tuning of b tagging algorithms –First-order acceptance/efficiency estimates While important, these models are never perfect –Uncertain production mechanisms and p T spectrum –Unknown contributions to inclusive B decays –Detector effects not accurately modeled Corrections to efficiency must be measured using data Fake rate difficult to model accurately and must also be measured.

January 6, Monte Carlo Event Generators Hard process: –Event generation (eg, Pythia, Herwig) Structure functions, matrix element, parton shower Explicit calculations of are less applicable –Fragmentation function, –Include some description of the underlying event B decay generators: –Model much of what we have learned about B decays from ARGUS, CLEO, BaBar, Belle,... –CLEO developed QQ, later interfaced with event generators at CDF in Run I –Now superseded by EvtGen...

January 6, EvtGen B Decay Generator Provides a convenient framework for modeling a wide variety of decays Efficient decay chain simulation via helicity amplitude formalism Decay table: –Only about half of the decay width is accounted for in exclusive final states. –Naive spectator model invoked for B 0 s and Λ b decays. –The remaining inclusive decays are simulated using a variant of the Lund string fragmentation model. Generally good agreement with observed B decay properties...

January 6, EvtGen B Decay Generator Inclusive processes Lepton momentum in semi-leptonic decays

January 6, Properties of B Decays Leptons (e or μ), Displaced tracks: –significantly non-zero impact parameter –reconstructed secondary vertices –approximately Lorentz invariant

January 6, The CDF Detector Muon systems: CMP CMX CMU SVX-II COT TOF Hadronic EM Calorimeter

January 6, CDF II Calorimeter Pb-Scintillator EM section Fe-Scintillator Hadronic section PMT’s Light guides Δη x Δφ = 0.1 x 0.25

January 6, CDF II Tracker Small cell drift chamber in a 1.4 Tesla field 4 axial, 4 stereo superlayers, 12 sense wires per layer Fast input to level 1 track trigger –Finds tracks with p T >1.5 GeV/c –Extrapolates to EM calorimeter and muon chambers Highest quality tracks found the tracker, extrapolated into the silicon detector.

January 6, CDF II Silicon Detector 5 layers of double- sided sensors: –3 φ-z (90°) –2 φ-SAS (±1.2°) 1 single-sided inner layer attached to beam pipe Not a pixel detector: most accurate reconstruction is in the r-φ plane. 90 cm 10.6 cm Luminous region: σ z ~ 30 cm

15 Jet Reconstruction Iterative cone algorithm, typically using Corrections applied for –Non-uniformity in η –Event pileup: 350 MeV in cone per additional vertex –Non-linear tower response –Unrecognizable as jets until E T > 20 GeV Associate tracks that lie within ΔR < 0.4 ~ η φ

January 6, Secondary Vertex Tagging Algorithm SecVtx algorithm: Phys. Rev. D71, (2005).Phys. Rev. D71, (2005) –Applied to tracks with p T >0.5 GeV/c in a cone around a jet within ΔR < 0.4. –Find all tracks with impact parameter significance, –Fit a vertex to all pairs of tracks Associate other tracks if Refit all tracks to common vertex Remove tracks with large –Require significant displacement, L xy > 0: dominated by b-jets L xy < 0: mis-tagged jets

January 6, –Second pass: If no vertex found in pass 1, search lower-quality two-track vertex using higher p T tracks with |d 0 /σ d0 |>3. –Different operating points: Tight (as described) Ultra-tight (without lower-quality second pass) Loose (relaxed impact parameter significance cuts, additional attempts to seed pass 1 vertices) Many parameters that can be tuned or adjusted to manipulate efficiency/purity. Secondary Vertex Tagging Algorithm

January 6, Heavy flavor jets: –vertices with positive 2d decay length Light flavor jets: –equal numbers of positive and negative 2d decay length vertices –not quite... correct for: K 0 S and Λ decays nuclear interactions

January 6, Measuring B Tag Efficiencies In principle, this is trivial in Monte Carlo In practice: –Apply same B tag algorithm to data and Monte Carlo –Correct the efficiency in Monte Carlo using scale factors: Efficiency measured in data: –Select a sample of jets with enhanced b fraction –Measure the efficiency and heavy flavor fraction simultaneously

January 6, Measuring Efficiency with Leptons Efficiency measured in data: –Tag one jet with a high p T muon –Tag opposite side jet with positive SecVtx tag –Require M vtx > 1.5 GeV/c 2 to suppress light flavor and charm –Fit for heavy flavor fraction using lepton p T,rel Example: E T extrapolation

January 6, Measuring Efficiency with Electrons 8 GeV electron trigger sample enriched in semi- leptonic B decays Apply tag to away-side jet Naive efficiency for positive tagged electron jet: Subtract expected light-flavor mis-tags:

January 6, Measuring Efficiency with Electrons Heavy flavor fraction of away side jet: Light jet fraction Probability of tagging light away-side jet Measured using yield of e+D 0 From Monte Carlo estimated using a sample enriched in photon conversions (mostly light flavor)

January 6, SecVtx Tag Efficiency Efficiency calculated for b-jets in a Monte Carlo sample of top decays –Scale factor applied to give efficiency in data.

January 6, Fake Rates Probability that a light jet is tagged as a B jet At Tevatron energies, a generic jet sample is mostly light flavor –Measure negative tag rate as a function of: E T jet, ΣE T jet, |η|, N Z vtx, Z pv –Provides an estimator for positive mis-tag rate Typically of order 1%... But this needs to be corrected for: –N LF + > N LF - due to K 0 S and Λ decays: α –Generic jet sample contains heavy flavor: β

January 6, Tag rate asymmetry: α correction Definition: Application: Fit bottom, charm, light flavor fractions using templates constructed from –Signed vertex mass, M vtx –Pseudo-proper time, Typical result: α ~ 1.2 – 1.5 (function of E T )

January 6, Tag rate asymmetry: β correction Definition: Application: Fit the flavor fractions in the pre-tagged samples: β ~ 1.1

January 6, Fake Rates Higher fake rates when track occupancy is high (high E T jets) and near edge of tracking acceptance.

January 6, Jet Probability Algorithm Jet axis used to construct signed impact parameter for high quality, high p T tracks in a jet: Impact parameter significance: Likely to be positive for tracks from displaced secondary vertices Symmetric about zero for tracks from the primary vertex. Phys. Rev. D74, (2006)Phys. Rev. D74, (2006).

January 6, Jet Probability Algorithm Signed impact parameter significance... Negative side fitted with resolution function R(S). Track probability: –uniformly distributed between 0 and 1 for prompt tracks. Jet probability: Uniformly distributed between 0 and 1 for light flavor jets.

January 6, Jet Probability Algorithm The efficiency/purity can be continuously adjusted by selecting P J < P J cut. Typical operating points: P J < 1% or P J < 5%. Monte Carlo CDF 50 GeV Jet sample Electron sample

January 6, Scale Factor and Mistag Asymmetry Heavy flavor fraction measured using electron/conversion technique

January 6, Jet Probability Efficiency/Fake Rate Better efficiency at high E T than SECVTX.

January 6, Neural Networks The SecVtx algorithm presumably does not use up all available information Further discrimination possible using advanced multivariate methods (eg, ANN’s) Train network using signal, background from mistags 25 variables had at least 3.5σ discriminating power used for input –# tracks with d 0 significance > 3, –signed d 0 significance of tracks, –vertex mass, –and many others...

Neural Network Vertex Classification

January 6, Neural Networks Network output is insensitive to the origin of the B jet Corrections calculated for sample dependence for mis- tagged jets as a function of E T, N track, ΣE T NN output used as input to another network to discriminate between signal and background in single top production.

January 6, Summary Characteristic features of heavy flavor decays exploited in various ways to tag B jets An extremely valuable element: –Ability to estimate light-flavor contamination using negative decay length/impact parameter jets –Even this is not ideal, but can be improved by α,β corrections Neural networks can be useful –provided they don’t sacrifice the ability to measure efficiency and fake rates in data Hopefully, some of these ideas can be translated to an environment with lower E T and higher track multiplicity –high quality 3d tracking using pixel detectors may be key