Spin Structure with JLab 6 and 12 GeV J. P. Chen, Jefferson Lab INT-12-49W: Workshop on Orbital Angular Momentum in QCD, Feb. 6, 2011  Overview  Selected.

Slides:



Advertisements
Similar presentations
K. Slifer, UNH JLab Readiness Review for the E Collaboration E May 6, 2011.
Advertisements

Study Neutron Spin Structure with a Solenoid Jian-ping Chen, Jefferson Lab Hall A Collaboration Meeting June 22-23, 2006 Inclusive DIS: Valence quark spin.
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Target Fragmentation studies at JLab M.Osipenko in collaboration with L. Trentadue and F. Ceccopieri, May 20,SIR2005, JLab, Newport News, VA CLAS Collaboration.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
1/9 Constraint on  g(x) at large-x Bj Masanori Hirai Titech (Asymmetry Analysis collaboration) With S. Kumano and N. Saito hep-ph/ ,TUKUBA.
Spin Structure in the Resonance Region Sarah K. Phillips The University of New Hampshire Chiral Dynamics 2009, Bern, Switzerland July 7, 2009 For the CLAS.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
Transverse Spin and TMDs Jian-ping Chen, Jefferson Lab EIC Workshop at INT09, Oct.19-23, 2009  Introduction: why do we care about transverse structure?
Parton Distributions at High x J. P. Chen, Jefferson Lab DNP Town Meeting, Rutgers, Jan , 2007  Introduction  Unpolarized Parton Distribution at.
Simulations of Single-Spin Asymmetries from EIC Xin Qian Kellogg, Caltech EIC Meeting at CUA, July 29-31, TMD in SIDIS 2.Simulation of SIDIS.
Semi-inclusive DIS Physics with SoLID J. P. Chen, Jefferson Lab Hall A&C Collaboration Meeting, JLab, June 5-6, 2014  Introduction  Spin-flavor and SIDIS.
Big Electron Telescope Array (BETA) Experimental Setup Expected Results Potential Physics from SANE Electron scattering provides a powerful tool for studying.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
1 Flavor Symmetry of Parton Distributions and Fragmentation Functions Jen-Chieh Peng Workshop on “Future Prospects in QCD at High Energy” BNL, July 17-22,
 Nucleon spin structure and Imaging in the Valence quark region ➥ Inclusive measurements at large x; quark models tests and Lattice QCD tests ➥ Exclusive.
Highlights and Perspectives of both Longitudinal and Transverse Spin Program at JLab J. P. Chen, Jefferson Lab, Virginia Los Alamos, February.
Highlights of Spin Study at JLab Hall A: Longitudinal and Transverse J. P. Chen, Jefferson Lab Pacific-Spin2011, Cairns, Australia  Introduction  Longitudinal.
New results on Neutron Single Target Spin Asymmetries from Transversely polarized 3 He target at Jlab Nilanga Liyanage, University of Virginia  Recent.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
1/10 Global analysis and the impact of eRHIC data Masanori Hirai TiTech (Asymmetry Analysis Collaboration) With S. Kumano and N. Saito , BNL.
Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv: [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory.
High-Energy QCD Spin Physics Xiangdong Ji Maryland Center for Fundamental Physics University of Maryland DIS 2008, April 7, 2008, London.
Spin-Flavor Decomposition J. P. Chen, Jefferson Lab PVSA Workshop, April 26-27, 2007, Brookhaven National Lab  Polarized Inclusive DIS,  u/u and  d/d.
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
Highlights of JLab Neutron ( 3 He) Spin Program J. P. Chen, Jefferson Lab Workshop on Spin at Long Distance, March 12-13, 2009  Introduction  Highlights.
Thomas Jefferson National Accelerator Facility R. D. McKeown Slide 1 R. D. McKeown Jefferson Lab College of William and Mary The 12 GeV Science Program.
Future Physics at JLab Andrew Puckett LANL medium energy physics internal review 12/14/
Spin Study at JLab: from Longitudinal to Transverse
DVCS with Positron Beams at the JLab 12 GeV Upgrade
Harut Avakian 1 H. Avakian, JLab, Sep 5 Rich Technical Review, 5 th September 2013 Kaon physics with CLAS12 Introduction Kaons in SIDIS Medium effects.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
General Discussion some general remarks some questions.
1 E.C. Aschenauer Recent results from lepton proton scattering on the spin structure of the nucleon.
Experimental Study of Nucleon Structure and QCD J. P. Chen, Jefferson Lab Workshop on Confinement Physics, March 12, 2012  Introduction  Selected JLab.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Quark Structure of the Proton – The Horizons Broaden! On behalf of the HERMES collaboration H. E. Jackson highlights.
1/8 Constraint on  g(x) from  0 production at RHIC Masanori Hirai Tokyo Tech (Asymmetry Analysis collaboration) With S. Kumano and N. Saito Phys.Rev.D74,
1 Probing Spin and Flavor Structures of the Nucleon with Hadron Beams Flavor and spin structures of the nucleons –Overview and recent results Future prospects.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Challenges of the Standard Model and the Nucleon Spin Puzzle Thomas Jefferson National Accelerator Facility (JLab) Recent Results from JLab Spin Program.
The 12 GeV Physics Program at Jefferson Lab R. D. McKeown Jefferson Lab College of William and Mary PTSP 2013 – Charlottesville, VA September 9, 2013.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Study Transverse Spin and TMDs with SIDIS Experiments J. P. Chen, Jefferson Lab Hall A Physics Workshop, December 14, 2011  Introduction  Transverse.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Anthony.
For SoLID Collaboration Meeting Spokespersons Jian-Ping Chen (JLab) Jin Huang (MIT) Yi Qiang (JLab) Wenbiao Yan (USTC, China)
Overview of Jefferson Lab’s Spin Physics Programme Stephen Bültmann - ODU RHIC/AGS Users Meeting, June 2007 Introduction Experimental Setup Asymmetry Measurement.
Nilanga Liyanage University of Virginia For Jefferson Lab Hall A, CLAS and RSS Collaborations.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Delia Hasch Transversity & friends from HERMES International workshop on hadron and spectroscopy, Torino, Italy, 31. March – 02. April 2008 outline outline.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
The Spin Physics Program at Jefferson Lab Sebastian Kuhn Old Dominion University e e PtPt PePe.
Nucleon spin physics with CLAS at Jlab Fifth International Conference on PERSPECTIVES IN HADRONIC PHYSICS Particle-Nucleus and Nucleus-Nucleus Scattering.
Vincent Sulkosky Massachusetts Institute of Technology The 7 th International Workshop on Chiral Dynamics August 10 th, 2012 Newport News, VA.
Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012  Introduction.
R. Joosten, Oct. 7, 2008 Measurement of TMDs in Semi-Inclusive DIS in Semi-Inclusive DIS Rainer Joosten University of Bonn Charlottesville, VA, October.
Experimental Studies of Spin Duality P. Bosted (JLab) Jlab Users Meeting, June 2005  Bloom-Gilman duality in inclusive g 1  Factorization in polarized.
Studies of the transverse structure of the nucleon at JLab Marco Mirazita INFN – Laboratori Nazionali di Frascati INPC2013 – Firenze, 2-7 June
Single Target Spin Asymmetries and GPDs Jian-ping Chen, Jefferson Lab, Virginia, USA SSA Workshop, BNL, June 1-3, 2005 Nucleon structure and GPDs DVCS.
1 Transversity Experiments Experimental probes for transversity Current experimental status on transversity and other related distribution and fragmentation.
Example 3 Slides for PAC. Measurement of Target Single Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering with 3 He Map Collins moments to provide.
Spin Structure of the Nucleon
Neutron Transverse Spin Structure
Higher twist effects in polarized experiments
JLab Spin Experiments Completed/on-going:
Study of Strange Quark in the Nucleon with Neutrino Scattering
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

Spin Structure with JLab 6 and 12 GeV J. P. Chen, Jefferson Lab INT-12-49W: Workshop on Orbital Angular Momentum in QCD, Feb. 6, 2011  Overview  Selected Results from JLab 6 GeV  A 1 at High-x: Valence Quark Spin Distributions  Moments  g 2 /d 2 : B-C Sum Rule, Color Lorentz Force (Polarizability)  SIDIS: Transversity and Flavor Decomposition  Planned experiments with JLab 12 GeV

Introduction Spin experiments provide fundamental information as well as insights into QCD dynamics Experiments: polarized beams(e, p), polarized targets (p, d, 3 He/n) longitudinal and transverse target polarization A||, A|_  A 1, A 2  ||,  |_  Spin Structure Functions g 1 (x, Q 2 ), g 2 (x, Q 2 ) Role of unpolarized PDFs/ R Polarized PDFs  q(x) LO, NLO,…, QCD evolution, Higher-twists Moments, sum rules High-x, low-x World data (CERN, SLAC, HERMES, RHIC-spin, JLab, …) JLab 6 GeV: high-x, low Q 2, high-precision., Future :12 GeV

Jefferson Lab Experimental Halls HallA: two HRS’ Hall B:CLAS Hall C: HMS+SOS 6 GeV polarized CW electron beam Pol=85%, 200  A Will be upgraded to 12 GeV by ~2014

JLab Polarized Proton/Deuteron Target Polarized NH 3 /ND 3 targets Dynamical Nuclear Polarization In-beam average polarization 70-90% for p 30-50% for d Luminosity ~ (Hall C/A) ~ (Hall B)

JLab Polarized 3 He Target longitudinal, transverse and vertical Luminosity=10 36 (1/s) (highest in the world) Record high pol ~ 60% 60% 15 uA

6 GeV JLab 12 CHL-2 Upgrade magnets and power supplies Enhance equipment in existing halls add Hall D (and beam line)

Experimental Halls (new) Hall D: linear polarized photon beam, Selonoid detetcor ­ GluoX collaboration: exotic meson spectroscopy gluon-quark hybrid, confinement Hall B: CLAS12 ­ GPDs, TMDs, … Hall C: Super HMS + existing HMS ­ Form factors, structure functions (A1n/d2n), … Hall A: Dedicated devices + existing spectrometers Super BigBite, SoLID, MOLLER ­ SIDIS (transversity/TMDs), PVDIS, …

JLab Spin Experiments Results: Published and Preliminary/Upcoming Spin in the valence (high-x) region Spin (g 1 /g 2 ) Moments: Spin Sum Rules, d 2 SSA in SIDIS: Transversity (n) SSA in Inclusive Reaction On-going g 2 p at low Q 2 Future: 12 GeV Inclusive: A 1 /d 2, Semi-Inclusive: Transversity, Flavor-decomposition Reviews: S. Kuhn, J. P. Chen, E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009)

Valence Quark Spin Structure A 1 at high x and flavor decomposition

Why Are PDFs at High x Important? Valence quark dominance: simpler picture -- direct comparison with nucleon structure models SU(6) symmetry, broken SU(6), diquark x  1 region amenable to pQCD analysis -- hadron helicity conservation? role of quark orbit angular momentum? Clean connection with QCD, via lattice moments (d 2 ) Input for search for new physics at high energy collider -- evolution: high x at low Q 2  low x at high Q 2 -- small uncertainties amplified -- example: HERA ‘anomaly’ (1998)

World data for A 1 Proton Neutron

JLab E Precision Measurement of A 1 n at Large x Spokespersons: J. P. Chen, Z. Meziani, P. Souder; PhD Student: X. Zheng First precision A 1 n data at high x Extracting valence quark spin distributions Test our fundamental understanding of valence quark picture SU(6) symmetry Valence quark models pQCD (with HHC) predictions Quark orbital angular momentum Crucial input for pQCD fit to PDF PRL 92, (2004) PRC 70, (2004)

Polarized Quark Distributions Combining A 1 n and A 1 p results Valence quark dominating at high x u quark spin as expected d quark spin stays negative! Disagree with pQCD model calculations assuming HHC (hadron helicity conservation) Quark orbital angular momentum Consistent with valence quark models and pQCD PDF fits without HHC constraint

Inclusive Hall A and B and Semi-Inclusive Hermes BBS BBS+OAM H. Avakian, S. Brodsky, A. Deur, and F. Yuan, PRL 99, (2007) pQCD with Quark Orbital Angular Momentum

Spokespersons: S. Choi, M. Jones, Z. Meziani and O. Rondon Preliminary A 1 (p) Results, Hall C SANE Courteous of O. Rondon

Spokespersons: S. Choi, Z. Meziani, X. Jiang and B. Sawasky Preliminary A 1 ( 3 He) Results, Hall A E Courteous of D. Flay

Spin-Structure in Resonance Region: E Spokesperson: N. Liyanage, J. P. Chen, S. Choi; PhD Student: P. Solvignon PRL 101, (2008) A 1 3He (resonance vs DIS)  1 resonance vs. pdfs xQ2Q2 x

A 1 p at 11 GeV (CLAS12) Projections for JLab at 11 GeV A 1 n at 11 GeV (Hall C/A)

 u and  d at JLab 11 GeV Polarized Sea GeV

 multiplicities in SIDIS ep→e’  X DSS (Q 2 =2.5GeV 2 ) DSS (Q 2 =25GeV 2 ) CLAS 6 Hall-C

Moments of Spin Structure Functions Sum Rules, Polarizabilities

First Moment of g 1 p :  1 p EG1b, arXiv: EG1a, PRL 91, (2003) Spokespersons: V. Burkert, D. Crabb, G. Dodge, 1p1p Total Quark Contribution to Proton Spin (at high Q 2 ) Twist expansion at intermediate Q 2, LQCD, ChPT at low Q 2

First Moment of g 1 n :  1 n E94-010, PRL 92 (2004) E97-110, preliminary EG1a, from d-p 1n1n

 1 of p-n EG1b, PRD 78, (2008) E EG1a: PRL 93 (2004)

Second Spin Structure Function g 2 Burkhardt - Cottingham Sum Rule d 2 : Color Lorentz Force (Polarizability) Spin Polarizabilities

Precision Measurement of g 2 n (x,Q 2 ): Search for Higher Twist Effects Measure higher twist  quark-gluon correlations. Hall A Collaboration, K. Kramer et al., PRL 95, (2005)

BC Sum Rule P N 3 He BC = Meas+low_x+Elastic 0<X<1 :Total Integral very prelim “low-x”: refers to unmeasured low x part of the integral. Assume Leading Twist Behaviour Elastic: From well know FFs (<5%) “Meas”: Measured x-range Brawn: SLAC E155x Red: Hall C RSS Black: Hall A E Green: Hall A E (preliminary) Blue: Hall A E (spokespersons: N. Liyanage, former student, JPC) (preliminary)

BC Sum Rule P N 3 He BC satisfied w/in errors for 3 He BC satisfied w/in errors for Neutron (But just barely in vicinity of Q 2 =1!) BC satisfied w/in errors for JLab Proton 2.8  violation seen in SLAC data very prelim

Color Lorentz Force (Polarizability): d 2 2 nd moment of g 2 -g 2 WW d 2 : twist-3 matrix element d 2 and g 2 -g 2 WW : clean access of higher twist (twist-3) effect: q-g correlations Color polarizabilities     are linear combination of d 2 and f 2 Provide a benchmark test of Lattice QCD at high Q 2 Avoid issue of low-x extrapolation Relation to Sivers and other TMDs

d 2 (Q 2 ) E “g2p” SANE “d2n” new in Hall A 6 GeV Experiments Sane: new in Hall C “g2p” in Hall A, 2011 projected

Preliminary results on neutron from E Spokespersons: J. P. Chen, S. Choi, N. Liyanage, plots by P. Solvignon

Spokespersons: S. Choi, M. Jones, Z. Meziani and O. Rondon Preliminary A 2 (p) Results, Hall C SANE Courteous of O. Rondon

Projection on d2p from Hall C SANE

Spokespersons: S. Choi, Z. Meziani, X. Jiang and B. Sawasky Projection on Hall A E (d 2 n ) Courteous of D. Flay

E : Proton g 2 Structure Function Fundamental spin observable has never been measured at low or moderate Q 2 BC Sum Rule : violation suggested for proton at large Q 2, but found satisfied for the neutron & 3 He. Spin Polarizability : Major failure (>8  of  PT for neutron  LT. Need g 2 isospin separation to solve. Hydrogen HyperFine Splitting : Lack of knowledge of g 2 at low Q 2 is one of the leading uncertainties. Proton Charge Radius : also one of the leading uncertainties in extraction of from  H Lamb shift. BC Sum Rule Spokespersons: A. Camsonne, J. P. Chen, D. Crabb, K. Slifer, 6 PhD students Scheduled to run 2/2012-5/2012 Spin Polarizability  LT

Spin Polarizabilities Preliminary E (and Published E94-010) Spokesperson: J. P. Chen, A. Deur, F. Garibaldi, plots by V. Sulkosky Significant disagreement between data and both ChPT calculations for  LT Good agreement with MAID model predictions  0  LT Q2 Q2 Q2 Q2

Single Target-Spin Asymmetries in SIDIS Transversity/Tensor Charge

Transversity Three twist-2 quark distributions: Momentum distributions: q(x,Q 2 ) = q ↑ (x) + q ↓ (x) Longitudinal spin distributions: Δq(x,Q 2 ) = q ↑ (x) - q ↓ (x) Transversity distributions: δq(x,Q 2 ) = q ┴ (x) - q ┬ (x) It takes two chiral-odd objects to measure transversity Semi-inclusive DIS Chiral-odd distributions function (transversity) Chiral-odd fragmentation function (Collins function)

E He Target Single-Spin Asymmetry in SIDIS Spokespersons: J. P. Chen, E. Cisbani, H. Gao, X. Jiang, J-C. Peng, 7 PhD students 3 He Sivers SSA: negative for π +, 3 He Collins SSA small Non-zero at highest x for  + Blue band: model (fitting) uncertainties Red band: other systematic uncertainties X. Qian, et al. PRL (2011)

Results on Neutron Collins asymmetries are not large, except at x=0.34 Sivers negative Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

12 GeV: Mapping of Collins Asymmetries with SoLID Both  + and  - For one z bin ( ) Will obtain many z bins ( ) Tensor charge E He(n), Spokespersons: J. P. Chen, H. Gao, X. Jiang, J-C. Peng, X. Qian E (p), Spokespersons: K. Allda, J. P. Chen, H. Gao, X. Li, Z-E. Mezinai

Summary Spin structure study full of surprises and puzzles A decade of experiments from JLab: exciting results valence spin structure precision measurements of g 2 /d 2 : high-twist spin sum rules and polarizabilities first neutron transversity Bright future 12 GeV Upgrade will greatly enhance our capability Precision determination of the valence quark spin structure flavor separation Precision measurements of g 2 /d 2 Precision extraction of transversity/tensor charge