Andreas Crivellin ITP Bern Non-minimal flavor violation in the MSSM.

Slides:



Advertisements
Similar presentations
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
Advertisements

Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Andreas Crivellin Overview of Flavor Physics with focus on the Minimal Supersymmetric Standard Model and two-Higgs-doublet models Supported by a Marie.
Probing SUSY with Higgs and B physics at the Tevatron and the LHC Marcela Carena Theoretical Physics Department, Fermilab D. Garcia, U. Nierste and C.
Maximal Flavor Violation based on work in: 1. arXiv/ AR & Shaouly Bar-Shalom 2. arXiv/ AR, Daniel Whiteson, Felix Yu & Shaouly Bar-Shalom.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Hadronic EDMs in SUSY GUTs
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
Oct. 25, 2004Mitsuru Kakizaki1 Flavor structure in supersymmetric models Mitsuru Kakizaki (ICRR, University of Tokyo) Oct. 25, Ochanomizu University.
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
Chiral freedom and the scale of weak interactions.
1 SUSY and B physics observables Yasuhiro Okada (KEK) Super B Factory Workshop in Hawaii, April 20, 2005.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
1 SUSY in B decays Yasuhiro Okada (KEK) Super B factory workshop in Hawaii January 21, 2004, Honolulu.
July 19, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 19, IPPP We investigate hadronic EDMs induced.
CP VIOLATION in b → s l + l - Transition. Direct CP-Violation CP non-conservation shows up as a rate difference between two processes that are the CP.
July 12, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 12, Nagoya University We investigate hadronic.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
2. Two Higgs Doublets Model
Texture of Yukawa coupling matrices in general two-Higgs doublet model Yu-Feng Zhou J. Phys. G: Nucl. Part. Phys.30 (2004) Presented by Ardy.
Introduction to Flavor Physics in and beyond the Standard Model
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Lepton flavour and neutrino mass aspects of the Ma-model Alexander Merle Max-Planck-Institute for Nuclear Physics Heidelberg, Germany Based on: Adulpravitchai,
1 Lepton Electric Dipole Moments in Supersymmetric Type II Seesaw Model Toru Goto, Takayuki Kubo and Yasuhiro Okada, “Lepton electric dipole moments in.
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
QFD, Weak Interactions Some Weak Interaction basics
1 Enhancement of in supersymmetric unified models Yukihiro Mimura (National Taiwan University) Talk at SUSY2015, Lake Tahoe.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
CP violation in seesaw mechanism Junji Hisano (ICRR, Univ. of Tokyo) International Conference on the Seesaw Mechanism (SEESAW25) June 2004, Institut.
Flavor and CP violation in SUSY seesaw models Junji Hisano (ICRR, Univ. of Tokyo) The 12th International Conference on Supersymmetry and Unification of.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
BEYOND MFV IN FAMILY SYMMETRY THEORIES OF FERMION MASSES Work done with Zygmunt Lalak and Graham Ross Based on existing ideas but, hopefully, contributing.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Andreas Crivellin Andreas Crivellin Albert Einstein Center for Fundamental Physics - Institute for Theoretical Physics Non-decoupling effects The model.
Effects of right-handed charged currents on the determinations of |V ub | and |V cb |. Andreas Crivellin, Phys.Rev.D81,2010, arXiv: [hep-ph] Andreas.
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
1 Aslı Sabancı University of Helsinki and Helsinki Insititute of Physics (HIP) Electric Dipole Moments in U(1)’ Models DESY Theory Workshop (Collider Phenomenology)
Probing flavor structure in unified theory with scalar spectroscopy June 21, 2007, Supersymmetry in Hall, Hokkaido University Kentaro.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
1 Quark flavour observables in 331 models in the flavour precision era Quark flavour observables in 331 models in the flavour precision era Fulvia De Fazio.
New Physics effect on Higgs boson pair production processes at LHC and ILC Daisuke Harada (KEK, Graduate University for Advanced Studies) in collaboration.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
Flavour Physics in and beyond the Standard Model
B-Anomalies related to leptons and LFUV
Radiative Flavour Violation in the MSSM
Radiative Flavor Violation
Andreas Crivellin Right-handed effects in Vub (and Vcb)
Hadronic EDMs in SUSY GUTs
Minoru Nagai (ICRR, Univ. of Tokyo)
Flavor changing amplitudes in the littlest Higgs model with T-parity
Implications of D-Mixing for New Physics
Searching for SUSY in B Decays
B->(D)tn in the MSSM
CEPC-Physics Workshop
Yasuhiro Okada (KEK) FPCP 2004, Deagu, Korea October 7, 2004
Analysis of enhanced effects in MSSM from the GUT scale
New Constraints on the Squark Mass Matrices of the MSSM
Run-Hui Li Yonsei University
Andreas Crivellin New Physics in the Flavour Sector.
Presentation transcript:

Andreas Crivellin ITP Bern Non-minimal flavor violation in the MSSM

Outline: The SUSY flavor and CP problem The SUSY flavor and CP problem Self-energies in the MSSM Self-energies in the MSSM Resummation of chirally enhanced corrections Resummation of chirally enhanced corrections Effective Higgs vertices Effective Higgs vertices Chirally enhanced corrections to FCNC processes Chirally enhanced corrections to FCNC processes Flavor from SUSY Flavor from SUSY Right-handed W-coupling and the determination of V ub and V cb. Right-handed W-coupling and the determination of V ub and V cb. Constraints on the squark mass splitting from Kaon and D mixing Constraints on the squark mass splitting from Kaon and D mixing

Introduction Sources of flavor violation in the MSSM

Quark masses Top quark is very heavy: Top quark is very heavy: Bottom quark rather light, but Y b can be big at large tan(β) Bottom quark rather light, but Y b can be big at large tan(β) All other quark masses are very small sensitive to radiative corrections All other quark masses are very small sensitive to radiative corrections

CKM matrix CKM matrix is the only source of flavor and CP violation in the SM. CKM matrix is the only source of flavor and CP violation in the SM. No tree-level FCNCs No tree-level FCNCs Off-diagonal CKM elements are small Off-diagonal CKM elements are small Flavor-violation is suppressed in the Standard Model. Flavor-violation is suppressed in the Standard Model.

SUSY flavor (CP) problem The squark mass matrices are not necessarily diagonal (and real) in the same basis as the quark mass matrices. The squark mass matrices are not necessarily diagonal (and real) in the same basis as the quark mass matrices. Especially the trilinear A-terms can induce dangerously large flavor- mixing (and complex phases) since they don’t necessarily respect hierarchy of the SM. Especially the trilinear A-terms can induce dangerously large flavor- mixing (and complex phases) since they don’t necessarily respect hierarchy of the SM. The MSSM possesses two Higgs-doublets: Flavor-changing charged and (loop-induced) neutral Higgs interactions. Why is the observed flavor violation so small? The MSSM possesses two Higgs-doublets: Flavor-changing charged and (loop-induced) neutral Higgs interactions. Why is the observed flavor violation so small? Possible solutions: Possible solutions: - MFV D’Ambrosio, Giudice, Isidori, Strumia hep-ph/ Flavor-symmetries - effective SUSY Barbieri et at hep-ph/ Radiative flavor violation

Squark mass matrix involves only bilinear terms (in the decoupling limit) hermitian: The chirality-changing elements are proportional to a vev

Mass insertion approximation (L.J. Hall, V.A. Kostelecky and S. Raby, Nucl. Phys. B 267 (1986) 415.) flavor indices 1,2,3 chiralitys L,R off-diagonal element of the squark mass matrix Useful to visualize flavor-changes in the squark sector

Self-energies in the MSSM

SQCD self-energy: Finite and proportional to at least one power of decoupling limit

Decomposition of the self-energy Decompose the self-energy into a holomorphic part proportional to an A-term non-holomorphic part proportional to a Yukawa Define dimensionless quantity which is independent of a Yukawa coupling

Chargino self-energy:

Finite Renormalization and resummation of chirally enhanced corrections AC, Ulrich Nierste, arXiv: AC, Ulrich Nierste, arXiv: AC, arXiv: AC, Lars Hofer, Janusz Rosiek arXiv:

tan(β) is automatically resummed to all orders Renormalization I All corrections are finite; counter-term not necessary. Minimal renormalization scheme is simplest. Mass renormalization

Renormalization II Flavour-changing corrections important two-loop corrections A.C. Jennifer Girrbach 2010

Renormalization III Renormalization of the CKM matrix: Decomposition of the rotation matrices Corrections independent of the CKM matrix CKM dependent corrections

Effective gaugino and higgsino vertices No enhanced genuine vertex corrections. No enhanced genuine vertex corrections. Calculate Calculate Determine the bare Yukawas and bare CKM matrix Determine the bare Yukawas and bare CKM matrix Insert the bare quantities for the vertices. Insert the bare quantities for the vertices. Apply rotations to the external quark fields. Apply rotations to the external quark fields. Similar procedure for leptons (up-quarks) Similar procedure for leptons (up-quarks)

Chiral enhancement For the bottom quark only the term proportional to tan(β) is important. tan(β) enhancement For the bottom quark only the term proportional to tan(β) is important. tan(β) enhancement For the light quarks also the part proportional to the A-term is relevant. For the light quarks also the part proportional to the A-term is relevant. Blazek, Raby, Pokorski, hep-ph/

Flavor-changing corrections Flavor-changing A-term can easily lead to order one correction. Flavor-changing A-term can easily lead to order one correction.

Chirally enhanced Corrections to FCNC processes AC, Ulrich Nierste, arXiv:

Improvement of FCNC analysis necessary if A-terms are big: Self energies can be of Ο(1) in the flavor conserving case, and have to be resummed. M.S.Carena, D.Garcia, U.Nierste and C.E.M.Wagner, [arXiv:hep-ph/ ]. They are still of Ο(1) in the flavor violating case, when the mixing angle is divided out. Two- or even three-loop processes can be of the same order as the LO process!

Inclusion of the self-energies We treat all diagrams in which no flavor appears twice on an external leg as one particle irreducible. We treat all diagrams in which no flavor appears twice on an external leg as one particle irreducible. Use of the MS-bar scheme allows for a direct relation between the parameters in the squark mass matrices and observables. Use of the MS-bar scheme allows for a direct relation between the parameters in the squark mass matrices and observables. Computations are easiest if one includes the chirally enhanced self-energies into a renormalized quark-squark-gluino vertex: Computations are easiest if one includes the chirally enhanced self-energies into a renormalized quark-squark-gluino vertex:

b→sγ Behavior of the branching ratio for Two-loop effects enter only if also m b μ tan(β) is large.

Constraints on δ 23 from b→sγ

Effective Higgs vertices AC, arXiv:

Higgs vertices in the EFT I new Flavour-diagonal case M. Spira et al arXiv:

Higgs vertices in the EFT II Non-holomorphic corrections Non-holomorphic corrections Holomorphic corrections Holomorphic corrections The quark mass matrix is no longer diagonal in the same basis as the Yukawa coupling Flavor-changing neutral Higgs couplings The quark mass matrix is no longer diagonal in the same basis as the Yukawa coupling Flavor-changing neutral Higgs couplings

Effective Yukawa couplings with Final result: Final result: Diagrammatic explanation in the full theory:

Higgs vertices in the full theory Cancellation incomplete since Part proportional to is left over. A-terms generate flavor-changing Higgs couplings Cancellation incomplete since Part proportional to is left over. A-terms generate flavor-changing Higgs couplings

Radiative generation of light quark masses and mixing angels AC, Ulrich Nierste, arXiv: AC, Jennifer Girrbach, Ulrich Nierste, arXiv: AC, Ulrich Nierste, Lars Hofer, Dominik Scherer arXiv:

SU(2)³ flavor-symmetry in the MSSM superpotential: CKM matrix is the unit matrix. CKM matrix is the unit matrix. Only the third generation Yukawa coupling is different from zero. Only the third generation Yukawa coupling is different from zero. All other elements are generated radiatively using the trilinear A-terms! Radiative flavor-violation

Features of the model Additional flavor symmetries in the superpotential. Additional flavor symmetries in the superpotential. Explains small masses and mixing angles via a loop- suppression. Explains small masses and mixing angles via a loop- suppression. Deviations from MFV if the third generation is involved. Deviations from MFV if the third generation is involved. Solves the SUSY CP problem via a mandatory phase alignment. (Phase of μ enters only at two loops) Borzumati, Farrar, Polonsky, Thomas Solves the SUSY CP problem via a mandatory phase alignment. (Phase of μ enters only at two loops) Borzumati, Farrar, Polonsky, Thomas The SUSY flavor problem reduces to the elements The SUSY flavor problem reduces to the elements Can explain the B s mixing phase Can explain the B s mixing phase

CKM generation in the down-sector: Allowed regions from b→sγ. Chirally enhanced corrections must be taken into account. A.C., Ulrich Nierste 2009 Allowed regions from b→sγ. Chirally enhanced corrections must be taken into account. A.C., Ulrich Nierste 2009

Non-decoupling effects Non-holomorphic self- energies induce flavour- changing neutral Higgs couplings. Non-holomorphic self- energies induce flavour- changing neutral Higgs couplings. Effect proportional to ε b Effect proportional to ε b

Higgs effects: B s →μ + μ - Constructive contribution due to Constructive contribution due to

Higgs effects: B s mixing Contribution only if due to Peccei-Quinn symmetry Contribution only if due to Peccei-Quinn symmetry

Correlations between B s mixing and B s →μ + μ - Br[B s →μ + μ - ]x10 -9 Br[B s →μ + μ - ]x10 -9

CKM generation in the up-sector: Constraints from Kaon mixing. Constraints from Kaon mixing. unconstrained from FCNC processes. unconstrained from FCNC processes. can induce a sizable right-handed W coupling. can induce a sizable right-handed W coupling.

Effects in K→ π νν Effects in K→ π νν Verifiable predictions for NA62 Verifiable predictions for NA62

A right-handed W coupling Effects on the determination of V ub and V cb in the MSSM AC, arXiv:

Motivation for a right-handed W coupling 2.2 σ discrepancy between the inclusive and exclusive determination of V cb 2.2 σ discrepancy between the inclusive and exclusive determination of V cb σ deviation from the SM expectation in B→ τν σ deviation from the SM expectation in B→ τν Tree-level processes. Commonly believed to be free of NP. (Charged Higgs contribution to B→τν is destructive.) Tree-level processes. Commonly believed to be free of NP. (Charged Higgs contribution to B→τν is destructive.) Notoriously difficult to explain the deviations from the SM

Effective field theory O (5) gives rise to neutrino masses O (5) gives rise to neutrino masses Focus on the dimension 6 operator which generates the anomalous W couplings Focus on the dimension 6 operator which generates the anomalous W couplings Buchmüller, Wyler Nucl. Phys. B268 (1986)

Possible size of V R strongly constrained from b→sγ Misiak et. al strongly constrained from b→sγ Misiak et. al also constrained from b→sγ (b→dγ) A.C. Lorenzo Mercolli arXiv: also constrained from b→sγ (b→dγ) A.C. Lorenzo Mercolli arXiv: No large effect for the first two generations possible because the CKM elements are big and the chirality violation is small. No large effect for the first two generations possible because the CKM elements are big and the chirality violation is small. Sizable effects possible in and Sizable effects possible in and

Genuine vertex- correction Corrections to the left-handed coupling suppressed because the hermitian part of the WFR cancels with the genuine vertex correction. Corrections to the left-handed coupling suppressed because the hermitian part of the WFR cancels with the genuine vertex correction. Right-handed coupling not suppressed! Right-handed coupling not suppressed!

Where are SUSY effects possible? strongly constrained from FCNC processes. strongly constrained from FCNC processes. less constrained from FCNC but constrained from the CKM renormalization. less constrained from FCNC but constrained from the CKM renormalization. constrained from D mixing constrained from D mixing nearly unconstrained from FCNCs and not involved in the CKM renormalization. nearly unconstrained from FCNCs and not involved in the CKM renormalization. Large possible if A b or tan(β) is large. Large possible if A b or tan(β) is large. V ud, V us, V cd, V cs are to large for observable effects Only V ub, V cb can be affected by SUSY effects. V ud, V us, V cd, V cs are to large for observable effects Only V ub, V cb can be affected by SUSY effects.

Biggest SUSY effect in V ub. Effect in V cb ≈10%

Right-handed W coupling in exclusive and inclusive B decays Exclusive leptonic B decays: ~|γ μ γ 5 |² V L =V+V R Exclusive leptonic B decays: ~|γ μ γ 5 |² V L =V+V R Exclusive semi-leptonic B decays to pseudo-scalar mesons ~|γ μ |² V L =V-V R Exclusive semi-leptonic B decays to pseudo-scalar mesons ~|γ μ |² V L =V-V R Exclusive semi-leptonic B decays to vector mesons ~|γ μ γ 5 |² at ω=1 Exclusive semi-leptonic B decays to vector mesons ~|γ μ γ 5 |² at ω=1 Inclusive B→u decay ~|1+γ μ γ 5 |²+|1-γ μ γ 5 |² V L ≈V Inclusive B→u decay ~|1+γ μ γ 5 |²+|1-γ μ γ 5 |² V L ≈V Inclusive B→c decay receive correction proportional to m c /m b Inclusive B→c decay receive correction proportional to m c /m b V L =V+0.56V R V L =V+0.56V R V = measured CKM element Dassinger, Feger, Mannel: Complete Michel Parameter Analysis of inclusive semileptonic b→c transition

Effects of a right-handed W- coupling on V ub inclusive CKM unitarity B→τν B→πlν

Connection to Single Top Production Plehn, Rauch, Spannowski: Feynman diagrams contributing to Single Top production Integrated luminosity necessary to discover Single Tops

Constraints on the mass splitting between left- handed squarks from D and K mixing AC, Momchil Davidkov, arXiv:

K and D mixing Mass difference is small: Mass difference is small: CP violation is tiny CP violation is tiny Constrains FCNCs between the first two generations in a stringent way.

SUYS Contributions SU(2) L relation: SU(2) L relation: SUSY contributions to D and Kaon mixing can only be simultaneously avoided if is proportional to the unit matrix. elements are induced if the left- handed squarks of the first two generations are not degenerate. elements are induced if the left- handed squarks of the first two generations are not degenerate.

Electroweak contributions are important for In non-minimal flavor violation the main focus is on the gluino contributions, however: The gluino contributions suffer from cancellations between the crossed and uncrossed boxes for The gluino contributions suffer from cancellations between the crossed and uncrossed boxes for Chargino diagrams do not suffer from such a cancellation. Chargino diagrams do not suffer from such a cancellation. Winos couple directly to left-handed squarks with g 2. can contribute without small LR or gaugino mixing. Winos couple directly to left-handed squarks with g 2. can contribute without small LR or gaugino mixing. The wino mass is often assumed to be much lighter than the gluino mass. In most GUT scenarios: The wino mass is often assumed to be much lighter than the gluino mass. In most GUT scenarios:

Relative importance of the contributions to C 1 normalized to the chargino contribution:

Allowed mass splitting Maximally allowed mass-splitting Alignment to Y d Alignment to Y u Minimally allowed mass-splitting Non-degenerate squark masses are allowed. Non-degenerate squark masses are allowed. More space for models with abelian flavor symmetries. More space for models with abelian flavor symmetries. Interesting for LHC benchmark scenarios. Interesting for LHC benchmark scenarios.

Conclusions Self-energies in the MSSM can be of order one. Self-energies in the MSSM can be of order one. Chirally enhanced corrections must be taken into account in FCNC processes. Chirally enhanced corrections must be taken into account in FCNC processes. A-terms generate flavor-changing neutral Higgs couplings. A-terms generate flavor-changing neutral Higgs couplings. Radiative generations of light fermion masses and mixing angles solves the SUSY flavor and the SUSY CP problem. It can explain B s mixing and enhance B s →μ + μ -. Radiative generations of light fermion masses and mixing angles solves the SUSY flavor and the SUSY CP problem. It can explain B s mixing and enhance B s →μ + μ -. The first two generations of left-handed squarks can be non-degenerate. The first two generations of left-handed squarks can be non-degenerate. The MSSM can generate a sizeable right-handed W-coupling. Tree-level processes are not necessarily free of NP! The MSSM can generate a sizeable right-handed W-coupling. Tree-level processes are not necessarily free of NP!

Finite renormalization (general formalism) Corrections to the Mass: Flavor valued wave-function corrections: Decomposition of the self-energies: with

Fine-tuning constraints A small parameter is natural if a symmetry is gained if parameter is put to zero A small parameter is natural if a symmetry is gained if parameter is put to zero Large accidental cancellations, not enforced by a symmetry are unnatural Large accidental cancellations, not enforced by a symmetry are unnatural ‘t Hooft’s naturalness argument: The SUSY corrections to the masses and mixing angels should not exceed the measured values.

Constrains from fermion masses I:

Example: V ub Constrains from the CKM matrix:

Constraints on from V ub For large helicity flipping elements, for example m b μ tan(β), also can be constrained. Strongest for :

Constrains from fermion masses II:

Existing results: FCNC bounds (decoupling): M. Ciuchini et al. [arXiv:hep-ph/ ] F. Borzumati, C.Greub, T.Hurth and D.Wyler [arXiv:hep-ph/ ] D. Becirevic et al. [arXiv:hep-ph/ ] M. Ciuchini et al. [arXiv:hep-ph/ ] … Vacuum stability bounds (non-decoupling): J.A.Casas and S.Dimopoulos, Stability bounds on flavor-violating trilinear soft terms in the MSSM, Phys. Lett. B387 (1996) 107 [arXiv:hep-ph/ ]

quantity our bound bound from FCNC bound from vacuum stability , K mixing , B d mixing , b→sγ , B d mixing , D mixing Results and comparison Bounds calculated with m squark =m gluino =1000GeV

Allowed range for NP in ΔF=2 processes Results taken for: UTfit Collaboration: Example: B s mixing

Effect of including the self- energies in ΔF=2 processes for

Constraints on (δ LR ) 23 from B s mixing

Constraints on δ LR from D, B, and K mixing

Constraints on δ 23 from b→sγ

inclusive B→Dlν B→D*lν Effects of a right-handed W-coupling on V cb