1 SUSY breaking studies Yasuhiro Okada (KEK) December 18, 2006 BNMII, Nara Women’s Univ.

Slides:



Advertisements
Similar presentations
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
Advertisements

The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Andreas Crivellin Overview of Flavor Physics with focus on the Minimal Supersymmetric Standard Model and two-Higgs-doublet models Supported by a Marie.
1 Lepton Flavor Violation Yasuhiro Okada (KEK) October 7, rd International Conference on Flavor Physics National Central University, Taiwan.
International Conference "Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21st Century" Date: 24 and 25 th November 2005 Place:
Exploration without Map - Lepton-Flavor Violation in LHC era - 1st Open Meeting of the SuperKEKB Collaboration KEK, Japan, December 2008 J.HISANO.
Hadronic EDMs in SUSY GUTs
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
Oct. 25, 2004Mitsuru Kakizaki1 Flavor structure in supersymmetric models Mitsuru Kakizaki (ICRR, University of Tokyo) Oct. 25, Ochanomizu University.
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
June 7, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) Jun. 7, KIAS We investigate hadronic EDMs induced.
1 SUSY and B physics observables Yasuhiro Okada (KEK) Super B Factory Workshop in Hawaii, April 20, 2005.
1 SUSY in B decays Yasuhiro Okada (KEK) Super B factory workshop in Hawaii January 21, 2004, Honolulu.
July 19, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 19, IPPP We investigate hadronic EDMs induced.
July 12, 2005Mitsuru Kakizaki1 Hadronic EDMs in SUSY GUTs Mitsuru Kakizaki (ICRR, Univ. of Tokyo) July 12, Nagoya University We investigate hadronic.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
1 Electroweak Baryogenesis and LC Yasuhiro Okada (KEK) 8 th ACFA LC workshop July 12, 2005, Daegu, Korea.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
1 Lepton Electric Dipole Moments in Supersymmetric Type II Seesaw Model Toru Goto, Takayuki Kubo and Yasuhiro Okada, “Lepton electric dipole moments in.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
QFD, Weak Interactions Some Weak Interaction basics
Yasuhiro Okada (KEK) February 4, 2005 at KEK
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
CP violation in seesaw mechanism Junji Hisano (ICRR, Univ. of Tokyo) International Conference on the Seesaw Mechanism (SEESAW25) June 2004, Institut.
Flavor and CP violation in SUSY seesaw models Junji Hisano (ICRR, Univ. of Tokyo) The 12th International Conference on Supersymmetry and Unification of.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Probing flavor structure in unified theory with scalar spectroscopy June 21, 2007, Supersymmetry in Hall, Hokkaido University Kentaro.
F. Richard ECFA Study June 2008 A 4th generation scenario F. Richard LAL/Orsay Beyond the 3SM generation at the LHC era.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
Radiative Flavour Violation in the MSSM
Radiative Flavor Violation
Exploring SUSY models through quark and lepton flavor physics
EDMs and Lepton Flavor Violation
Hadronic EDMs in SUSY GUTs
Searching for New Physics in B decays
CLFV theory and prospect
Exploring SUSY models through quark and lepton flavor physics
Non-MFV and Non-SUSY models
Exploring SUSY models through quark and lepton flavor physics
Minoru Nagai (ICRR, Univ. of Tokyo)
岡田 安弘 (KEK、総合研究大学院大学) 2008年6月25日 日本大学
Higgs and SUSY at future colliders
Lepton Flavor Violation
Yasuhiro Okada (KEK) December 18, 2006 BNMII, Nara Women’s Univ.
Flavor and Physics beyond the Standard Model
Searching for SUSY in B Decays
B->(D)tn in the MSSM
New Physics from B decays
Exploring SUSY breaking mechanism with B decays
Patterns of flavor signals in supersymmetric models
Search for new physics beyond the SM
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
岡田安弘(KEK/総研大) 2007年10月26日 KEK 第三回 J-PARC遅い取り出しユーザー加速器連絡会
Physics at a Linear Collider
CEPC-Physics Workshop
Flavor Phenomenology in SUSY models
Yasuhiro Okada (KEK) FPCP 2004, Deagu, Korea October 7, 2004
Physics beyond the SM in Kaon decays --Theory--
Muon Physics Yasuhiro Okada (KEK) November 18, 2005
Searching for New Physics in muon lepton flavor violating processes
Lepton Flavor Violation
Lepton Flavor Violation in muon and tau decays
Quark and lepton flavor signals in various SUSY models
SUSY and B physics observables
Theoretical Status of LFV and Rare Tau decays
A possible interplay between flavor and LHC Physics
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

1 SUSY breaking studies Yasuhiro Okada (KEK) December 18, 2006 BNMII, Nara Women’s Univ.

2 New physics search at Super B factory Progress in understanding the electroweak symmetry breaking physics is expected in the LHC era. Electroweak symmetry breaking requires dynamics beyond three known gauge interactions, so that we expect something new at the TeV scale. Effects of new physics may appear in flavor physics observables. In order to distinguish various models, we need to study pattern of the deviations from the standard model predictions in many observables. Advantage of the planned super B factory is that there are several qualitatively different observables. For new physics search, correlations among quark flavor physics, lepton flavor physics and flavor-diagonal CP violation become important.

3 SUSY in Super B factory era LHC experiments will be a crucial test for existence of SUSY. (Squark/gluino mass reach ~ 2 -3TeV, A light Higgs boson) Mass spectrum from LHC and ILC will provide a hint for a SUSY breaking scenario. G.A.Blair, W.Porod, and P.M. Zerwas

4 Role of Flavor Physics Determine flavor structure of squark mass matrices. (New flavor mixing and new CP phases.) Quark mass -> Yukawa coupling Squark mass -> SUSY breaking terms SUSY breaking terms depend on SUSY breaking mechanism and interaction at the GUT/Planck scale. Diagonal tem: LHC/LC Off diagonal term: Flavor Physics

5 B physics in three SUSY models T.Goto, Y.O. Y.Shimizu, T.Shindou, and M.Tanaka, 2002,2003 and Super KEKB LoI In order to illustrate a potential of B physics in exploring flavor structure of SUSY breaking, we calculate various observables in three SUSY models. Models 1. Minimal supergravity model 2. SU(5) SUSY GUT with right-handed neutrino 3.MSSM with U(2) flavor symmetry Observables Bd-Bd mixing, Bs-Bs mixing. CP violation in K-K mixing (  ). Time-dependent CP violation in B ->J/  Ks, B->  Ks, B->K* . Direct CP violation in b->s .

6 Minimal supergravity model All squarks are degenerate at the Planck scale. Flavor mixings and mass-splittings are induced by renormalization. Flavor mixing in the d L sector. As a consequence, The CKM matrix is the only source of flavor mixing. SUSY CP phases (A-term,  term) constrained by EDM experiments. S.Belrolini, F.Borzumati, A.Masiero, and G.Ridorfi, 1991, …..

7 SU(5) SUSY GUT with right-handed neutrino Large flavor mixing in the neutrino sector can be a source of flavor mixing in the right- handed sdown sector. Correlation with LFV processes (  e , etc) is important. New CP phases in the GUT embedding. (T.Moroi) S.Baek,T.Goto,Y.O, K.Okumura, 2000,2001;T.Moroi,2000; N.Aakama, Y.Kiyo, S.Komine, and T.Moroi, 2001, D.Chang, A.Masiero, H.Murayama,2002; J.Hisano and Y.Shimizu, 2003;….

8 The LFV constraint depends on neutrino parameters Neutrino mass LFV mass terms for slepton (and sdown). Two cases considered for M R. (1)Degenerate case (M R ) ij = M  ij  Severe  >e  constraint (2) Non-degenerate case  ->e  suppressed (Casas and Ibarra, Ellis-Hisano-Raidal-Shimizu)

9 MSSM with U(2) flavor symmetry The quark Yukawa couplings and the squark mass terms are governed by the same flavor symmetry. 1st and 2nd generation => U(2) doublet 3rd generation => U(2) singlet A.Pomarol and D.Tommasini, 1996; R.Barbieri,G.Dvali, and L.Hall, 1996; R.Barbieri and L.Hall; R.Barbieri, L.Hall, S.Raby, and A.Romonino; R.Barbieri,L.Hall, and A.Romanino 1997; A.Masiero,M.Piai, and A.Romanino, and L.Silvestrini,2001; ….

10 A(B->J/  Ks)   m(Bs)/  m(Bd) mSUGRA SU(5) GUT Degenerate SU(5) GUT Non-degenerate U(2) FS Small deviation in mSUGRA. Bd unitarity triangle is closed, but  K has a large SUSY contribution in SU(5) GUT for the degenerate M R case. Bs mixing receives SUSY effects for the non-degenerate case. Various SUSY contributions for the U(2)flavor symmetry model. Unitarity triangle

11 CP asymmetries in B  Ks and b  s  Direct asymmetry in b  s  CP asymmetry in B  Ks CP asymmetry in B  K* 

12 Update 2006 (preliminary results) We have taken into account the new measurement of the Bs mixing. (CDF) Many technical improvements concerning radiative corrections at the SUSY scale. T.Goto, Y.O., T.Shindou, and M.Tanaka

13 Unitarity triangle The Bs mixing constraint is strong. Survival points are reduced due to a slight tension between |Vub| and sin2  1 measurements SU(5) GUT Degenerate SU(5) GUT Non-degenerate U(2) FS

14 Difference between the Bd mixing angle and real 2  1 :U(2) case Need to determine |Vub| and  3 at a few % level to distinguish this difference.

15 S(  Ks)-S(J/  Ks) SU(5) GUT Degenerate SU(5) GUT Non-degenerate Difference can be % for SU(5) GUT with non-degenerate case and the U(2) model. U(2) FS

16 Direct and mixing induce asymmetry in b to s  CP asymmetry in B  K*  Direct asymmetry in b  s  A few% % SU(5) GUT Degenerate SU(5) GUT Non-degenerate U(2) FS

17 CP violating phase in the Bs mixing S(Bs->J/  ) can deviate from the SM by 5-10% for SU(5) GUT with non-degenerate case and the U(2) model. SU(5) GUT Degenerate SU(5) GUT Non-degenerate U(2) FS

18 Tau and muon lepton flavor violation LFVs are processes that limit the parameter space. SU(5) GUT Degenerate SU(5) GUT Non-degenerate U(2) FS  ->e  ->e  and  -> 

19 Electric dipole moments Neutron and Hg electric dipole moments are other important limiting processes. Although theoretical uncertainty is still large, EDM is a promising signal for models of 2-3 mixing of right-handed squark. Stronger constraints are obtained if we use the estimation of the neutron EDM from the strange quark chromomagentic moment in the chiral perturbation theory (J. Hsano and Y. Shimizu, 2004). U(2) FSSU(5) GUT Non-degenerate

20 Bd- unitarity Triangle test T-dep CPV in B->  Ks, B->K*  b->s  direct CP T-dep CPV in Bs->J/  LFVEDM mSUGRA _ _____ SU(5)SUSY GUT + R (degenerate) _ ___  ->e  _ SU(5)SUSY GUT + R (non-degenerate) _ <O(10%) _ <~5%  ->e   ->  nEDM U(2) Flavor symmetry < a few % <O(10%) < a few % <~5%  ->e   >  nEDM Summary of possible deviations from the SM prediction

21 Summary We have updated the study of the flavor signals in three SUSY models. The measurement of the Bs mixing have already put strong constraints on possible deviations especially for b-s transition processes. Although the pattern of the deviations is similar to the previous case, numerical values are somewhat more constrained. Quark flavor signals, Lepton flavor violation and EDM are correlated differently for each case, so that improvements in all processes are important.