STAR Heavy Flavor Upgrades Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.

Slides:



Advertisements
Similar presentations
The STAR Heavy Flavor Tracker Flemming Videbæk For the STAR collaboration Brookhaven National Lab 1.
Advertisements

HFT Technical Overview September 26, HFT 2013 TPC FGT 2011 STAR Detectors Fast and Full azimuthal particle identification EMC+EEMC+FMS (-1 ≤ 
STAR Heavy Flavor Tracker
STAR Heavy Flavor Tracker
The Physics of HFT the Heavy Flavor Tracker at STAR Spiros Margetis Kent State University, USA Excited QCD 2010.
417 th WE-Heraeus-Seminar Characterization of the Quark Gluon Plasma with Heavy Quarks Physikzentrum Bad Honnef June 25-28, 2008 Ralf Averbeck, Heavy-Flavor.
Heavy Flavor Physics in HIC with STAR Heavy Flavor Tracker Yifei Zhang (for the STAR HFT Group) Hirschegg 2010, Austria Outline:  Physics motivation 
The STAR Upgrade Program Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration Winter Workshop on Nuclear Dynamics, Feb 2013.
Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurements by Weak-Decayed Electrons at RHIC-PHENIX.
1 Jim Thomas – The Berkeley Lab Three Abstracts for QM 2011 Instrumentation Session The Heavy Flavor Tracker (HFT) The Muon Telescope Detector (MTD) A.
Charm & bottom RHIC Shingo Sakai Univ. of California, Los Angeles 1.
Direct virtual photon production in Au+Au collision at 200 GeV at STAR Bingchu Huang for the STAR collaboration Brookhaven National Laboratory Aug
Bingchu Huang, USTC/BNL 1 Bingchu Huang (for STAR Collaboration) University of Science and Technology of China (USTC) Brookhaven National Laboratory (BNL)
Winter Workshop on Nuclear Dynamics, Heavy Ion Physics with CMS: Day-One Measurements Olga Barannikova for the CMS Collaboration.
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
STAR upgrade workshop, Yale, Jun , People: F. Bieser, R. Gareus, L. Greiner, H. Matis, M. Oldenburg, F. Retiere, H.G. Ritter, K.S., A. Shabetai(IReS),
4/1/2010MRPC workshop at USTC, Lijuan Ruan (BNL)1 STAR di-lepton measurements Outline: Motivation and Introduction Results from 200 GeV p+p collisions.
Preparation of MTD production Yongjie Sun Center of Particle Physics and Technology University of Science and Technology of China.
04/11/2008Lijuan Ruan (WWND2008)1 Prototype Performance of Novel Muon Telescope Detector at STAR Outline: Motivation Simulation Intrinsic timing and spatial.
Non-photonic electron production in STAR A. G. Knospe Yale University 9 April 2008.
SQM2006, 03/27/2006Haibin Zhang1 Heavy Flavor Measurements at STAR Haibin Zhang Brookhaven National Laboratory for the STAR Collaboration.
The Physics Potential of the PHENIX VTX and FVTX Detectors Eric J. Mannel WWND 13-Apr-2012.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
1 Jim Thomas - LBL STAR Inner Tracking Upgrades with an emphasis on the Heavy Flavor Tracker presented by Jim Thomas Lawrence Berkeley Laboratory 11 /
M. Brooks, LANL 1 Physics and Simulation Status and To-Dos Physics Section could probably use a top-down re-write. Most of the info is probably there but.
STAR Heavy Flavor Upgrades Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
Measurement of J/ψ production in p+p collisions at √s = 500 GeV at STAR experiment Rongrong Ma (BNL) Hard Probes 2015 McGill University, Montreal, Canada.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
Heavy Flavor Physics in STAR Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
 production in p+p and Au+Au collisions in STAR Debasish Das UC Davis (For the STAR Collaboration)‏
STAR RHIC AGS users meeting, May 30, Star Inner Tracking upgrade F. Videbaek STAR collaboration for the HFT upgrade group.
Spiros Margetis (Kent State Univ.) for the STAR Collaboration STAR Heavy Flavor Tracker Bari, Italy 2014.
The status of high p T Non-photonic electron-hadron correlations in AuAu 200GeV collisions Wenqin Xu University of California, Los Angeles For the STAR.
Open heavy flavor in STAR David Tlusty NPI ASCR, CTU Prague for the STAR collaboration STAR.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Open charm hadron production via hadronic decays at STAR
Heavy flavor production at RHIC Yonsei Univ. Y. Kwon.
J/Ψ PRODUCTION IN A+A COLLISIONS AT STAR Ota Kukral for the STAR Collaboration Czech Technical University in Prague RHIC & AGS Annual Users’ Meeting 17.
1 STAR Open Heavy Flavor Measurements Gang Wang (UCLA) 1  Motivation  D 0 / D s / D*  Non-photonic electron  Summary.
G. Contin | The STAR Heavy Flavor Tracker (HFT) and Upgrade Plan Quark Matter 2015 – Kobe, Japan Session : Future Experimental Facilities,
Measurement of D-meson azimuthal anisotropy in Au+Au 200GeV collisions at RHIC Michael R. Lomnitz Kent State University Lawrence Berkeley National Laboratory.
03/13/2012Moriond QCD and High Energy Interactions, Mar Di-lepton production at STAR Outline: Motivation and Introduction Recent results from STAR.
STAR-MTD March 30 th -April 1 th, 2011 Wang Yi, Tsinghua University 1 Final design and plan for LMRPC production Outline: LMRPC structure.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
Non-photonic electron production in p+p collisions at √s=200 GeV Xiaozhi Bai for the STAR collaboration Central China Normal University University of Illinois.
ϒ measurements in p+p collisions at √s = 500 GeV with the STAR experiment Leszek Kosarzewski, for the STAR Collaboration Warsaw University of Technology,
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
JPS/DNPY. Akiba Single Electron Spectra from Au+Au collisions at RHIC Y. Akiba (KEK) for PHENIX Collaboration.
The Heavy Flavor Tracker (HFT) The Silicon Vertex Upgrade of RHIC Jaiby Joseph* for the STAR Collaboration * Kent State University, USA Lake Louise.
1 Guannan Xie Nuclear Modification Factor of D 0 Mesons in Au+Au Collisions at √s NN = 200 GeV Lawrence Berkeley National Laboratory University of Science.
X. DongAug , 2014 TPD RBRC Workshop, BNL Dielectron Mass Spectrum & Elliptic Flow at Au+Au 200 GeV Xin Dong Lawrence Berkeley National Laboratory.
D.Arkhipkin, Y. Zoulkarneeva, Workshop of European Research Group on Ultra relativistic Heavy Ion Physics March 9 th 2006 Transverse momentum and centrality.
Outline Motivation The STAR/EMC detector Analysis procedure Results Final remarks.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Dec 2002 Craig Ogilvie 1 Physics Goals of Si Vertex Detector  Physics priorities latter part of this decade –spin carried by gluons:  G vs x –modification.
05/23/14Lijuan Ruan (BNL), Quark Matter The low and intermediate mass dilepton and photon results Outline: Introduction New results on dileptons.
Bottonium Measurements at Midrapidity at the STAR Experiment Lake Louise Winter Institute Feb Ahmed Hamed (Texas A&M University) 1 Ahmed.
Heavy Flavor Physics in STAR Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
SPHENIX Mid-rapidity extensions: Additional Tracking system and pre-shower Y. Akiba (RIKEN/RBRC) sPHENIX workfest July 29,
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
J. Zhao Hard Probe 2012, Cagliari 1, Lawrence Berkeley National Lab, USA 2, Shanghai Institution of Applied Physics, CAS, China Di-electron Production.
PHENIX J/  Measurements at  s = 200A GeV Wei Xie UC. RiverSide For PHENIX Collaboration.
Extending the PHENIX physics reach Physics beyond the baseline accessible at RHIC II Capabilities needed to address the new physics Detector upgrades to.
Non-Prompt J/ψ Measurements at STAR Zaochen Ye for the STAR Collaboration University of Illinois at Chicago The STAR Collaboration:
Open heavy flavor analysis with the ALICE experiment at LHC
Heavy Ion Physics in RUN14-16
Motivation for Studying Heavy Quarks
Presentation transcript:

STAR Heavy Flavor Upgrades Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration

Overview Introduction – Heavy Flavor Physics Upgrades – Muon Telescope Detector (MTD) – Realization & Planned Physics from MTD – Heavy Flavor Tracker (HFT) – Realization & Planned Physics from HFT Status and Summary 15 -Nov-12

Motivation for Studying Heavy Quarks Heavy quark masses are only slightly modified by QCD. Interaction is sensitive to initial gluon density and gluon distribution. Interaction with the medium is different from light quarks. Suppression or enhancement pattern of heavy quarkonium production reveals critical features of the medium (temperature). Cold Nuclear effect (CNM): Different scaling properties in central and forward rapidity region CGC. Gluon shadowing, etc. D0D0 K+K+  l K-K- e-/-e-/- e-/-e-/- e+/+e+/+ Heavy quarkonia Open heavy flavor Non-photonic electron 15 -Nov-12

Some Recent STAR HF results These were presented in preceding talk at the workshop. Significant results have been published. 15 -Nov-12 D0 in p+p Charm p T spectra Sigma_c vs Ncoll Ypsilon signal e+e- Cham cross section Ypsilon centrality dep.

STAR near term upgrades Muon Telescope Detector (MTD) – Accessing muons at mid-rapidity – R&D since 2007, construction since 2010 – Significant contributions from China & India Heavy Flavor Tracker (HFT) – Precision vertex detector – Ongoing DOE MIE since 2010 – Significant sensor development by IPHC, Strasbourg 15 -Nov-12

11/17/20116 STAR-MTD physics motivation The large area of muon telescope detector (MTD) at mid-rapidity allows for the detection of di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production single muons from the semi-leptonic decays of heavy flavor hadrons advantages over electrons: no  conversion, much less Dalitz decay contribution, less affected by radiative losses in the detector materials, trigger capability in Au+Au collisions trigger capability for low to high p T J/  in central Au+Au collisions and excellent mass resolution allow separation of different upsilon states e-muon correlation can distinguish heavy flavor production from initial lepton pair production

15 -Nov-12 Concept of design of the STAR-MTD Multi-gap Resistive Plate Chamber (MRPC): gas detector, avalanche mode A detector with long-MRPCs covers the whole iron bars and leaves the gaps in- between uncovered. Acceptance: 45% at |  |< modules, 1416 readout strips, 2832 readout channels Long-MRPC detector technology, electronics same as used in STAR-TOF MTD F.Videbæk / BNL

STAR-MTD 15 -Nov-12

MTD Performance from Run 12 Commissioned e-muon (coincidence of single MTD hit and BEMC energy deposition above a certain threshold) and di-muon triggers, event display for Cu+Au collisions shown above. Determined the electronics threshold for the future runs, achieved 90% efficiency at threshold 24 mV Intrinsic spatial resolution: 2 cm 15 -Nov-12 e-muondi-muon p T (GeV/c) Y Resolution (cm) p T (GeV/c) Efficiency

Quarkonium from MTD 1.J/  : S/B=6 in d+Au and S/B=2 in central Au+Au collisions 2.Excellent mass resolution: separate different upsilon states 3.With HFT, study B  J/  X; J/    using displaced vertices Heavy flavor collectivity and color screening, quarkonia production mechanisms: J/  R AA and v 2 ; upsilon R AA … Z. Xu, BNL LDRD ; L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) Nov-12

Measure charm correlation with MTD upgrade: cc bar  e+  An unknown contribution to di-electron mass spectrum is from ccbar, which can be disentangled by measurements of e  correlation. Simulation with Muon Telescope Detector (MTD) at STAR from cc bar : S/B=2 (M eu >3 GeV/c 2 and p T (e  )<2 GeV/c) S/B=8 with electron pairing and tof association 15 -Nov-12

Heavy Flavor Tracker (HFT) TPC Volume Outer Field Cage Inner Field Cage FGT SSD IST PXL HFT Detector Radius (cm) Hit Resolution R/  - Z (  m -  m) Radiation length SSD2220 / 7401% X 0 IST14170 / 1800<1.5 %X 0 PIXEL 812/ 12~0.4 %X / 12~0.4% X 0 SSD existing single layer detector, double side strips (electronic upgrade) IST one layer of silicon strips along beam direction, guiding tracks from the SSD through PIXEL detector. - proven strip technology PIXEL two layers 18.4x18.4  m pixel pitch 10 sector, delivering ultimate pointing resolution that allows for direct topological identification of charm. new monolithic active pixel sensors (MAPS) technology 15 -Nov-12

PXL Detector Design Aluminum conductor Ladder Flex Cable Ladder with 10 MAPS sensors (~ 2×2 cm each) Carbon fiber sector tubes (~ 200µm thick) 20 cm The Ladders will be instrumented with sensors thinned down to 50 micron Si. Novel rapid insertion mechanism allows for dealing effectively with repairs. Precision kinematic mount guarantees reproducibility to < 20 microns 15 -Nov-12

Intermediate Si Tracker 15 -Nov-12 Details of wire bonding 24 ladders, liquid cooling. Prototype Ladder S:N > 20:1 >99.9% live and functioning channels

Silicon Strip Detector (SSD) 4.2 Meters ~ 1 Meter 44 cm 20 Ladders HF workshop UIC Ladder Cards 15

MSC Pixel Insertion Tube Pixel Support Tube IDS East Support Cylinder Outer Support Cylinder West Support Cylinder PIT PST ESC OSC WSC Shrouds Middle Support Cylinder Inner Detector Support Inner Detector Support (IDS) HF workshop UIC Carbon Fiber Structures provide support for 3 inner detector systems and FGT. All systems are highly integrated into IDS. Installed for run-12 16

Insertion check setup F.Videbæk / BNL Two sector only shown in D-Tube (sector holding part). Next slides shows how this will be moved into position around the beam pipe (test setup). 15 -Nov-12

STAR inner detector Support 15 -Nov-12

Physics of the Heavy Flavor Tracker at STAR 1) Direct HF hadron measurements (p+p and Au+Au) (1) Heavy-quark cross sections: D 0± *, D S, Λ C, B… (2) Both spectra (R AA, R CP ) and v 2 in a wide p T region: GeV/c (3) Charm hadron correlation functions, heavy flavor jets (4) Full spectrum of the heavy quark hadron decay electrons 2) Physics (1) Measure heavy-quark hadron v 2, heavy-quark collectivity, to study the medium properties e.g. light-quark thermalization (2) Measure heavy-quark energy loss to study pQCD in hot/dense medium e.g. energy loss mechanism (3) Measure di-leptons to study the direct radiation from the hot/dense medium (4) Analyze hadro-chemistry including heavy flavors 15 -Nov-12

GEANT: Realistic detector geometry + Standard STAR tracking including the pixel pileup hits at RHIC-II luminosity Goal with Al-based cable (Cu cable -> 55 micron at 750 MeV/c K) DCA resolution performance r-phi and z Nov-12 F.Videbæk / BNL

Nov-12 F.Videbæk / BNL Physics – Run-14,15 projections R CP =a*N10%/N(60-80)% Assuming D0 v 2 distribution from quark coalescence. 500M Au+Au m.b. events at 200 GeV. - Charm v 2  Medium thermalization degree Drag coefficients! Assuming D0 R cp distribution as charged hadron. 500M Au+Au m.b. events at 200 GeV. - Charm R AA  Energy loss mechanism! Color charge effect! Interaction with QCD matter!

Nov-12 F.Videbæk / BNL Charmed baryons (Lambda c) – Run-16  c  pK  Lowest mass charm baryons c  = 60  m  c /D enhancement?  0.11 (pp PYTHIA)  (Di-quark correlation in QGP) S.H. Lee etc. PRL 100, (2008)  Total charm yield in heavy ion collisions

Nov-12 F.Videbæk / BNL Access bottom production via electrons particl e c  (  m) Mas s q c,b →x (F.R.) x →e (B.R.) D0D D±D± B0B BB Two approaches:  Statistical fit with model assumptions Large systematic uncertainties  With known charm hadron spectrum to constrain or be used in subtraction

Nov-12 F.Videbæk / BNL Statistic projection of e D, e B R CP & v 2 Curves: H. van Hees et al. Eur. Phys. J. C61, 799(2009).  (B  e) spectra obtained via the subtraction of charm decay electrons from inclusive NPEs: - no model dependence, reduced systematic errors.  Unique opportunity for bottom e-loss and flow. - Charm may not be heavy enough at RHIC, but how is bottom?

Nov-12 F.Videbæk / BNL B tagged J/psi Prompt J/  from B  Current measurement via J/  -hadron correlation with large uncertainties.  Combine HFT+MTD in di-muon channel  Separate secondary J/psi from promptJ/psi  Constrain the bottom production at RHIC STAR Preliminary Zebo Tang, NPA 00 (2010) 1.

HFT project status HFT upgrade was approved CD2/3 October 2011 and is well into fabrication phase. All detector components have passed the prototype phase successfully. A PXL prototype with 3+ sectors instrumented is planned for an engineering run and data taking in STAR in early The full assembly including PXL, IST and SSD should be available for RHIC Run-14, which is planned to be a long Au-Au run 15 -Nov-12

Summary Initial heavy flavor measurements have been performed by STAR. Further high precision measurements are needed. HFT upgrades will provide direct topological reconstruction for charm. MTD will provide precision Heavy Flavor measurements in muon channels. 15 -Nov-12