Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.

Slides:



Advertisements
Similar presentations
Electroweak Symmetry Breaking from D-branes Joshua Erlich College of William & Mary Title U Oregon, May 22, 2007 w/ Chris Carone, Marc Sher, Jong Anly.
Advertisements

Based on arXiv:1107.xxxx with G. Mandal (TIFR) What is the gravity dual of the confinement/deconfinement transportation in holographic QCD Takeshi Morita.
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Brane-World Inflation
With Y. Seo, J.P. Shock, D. Zoakos(0911.xxxx) CY.Park, KH. Jo, BH Lee( )
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
3rd International Workshop On High Energy Physics In The LHC Era.
Conductivity and non-commutative holographic QCD M. Ali-Akbari School of physics, IPM, Iran Sixth Crete regional meeting in string theory Milos, 2011.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
the equation of state of cold quark gluon plasmas
Large N c QCD Towards a Holographic Dual of David Mateos Perimeter Institute ECT, Trento, July 2004.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Equations of state and compact stars in gauge/gravity duality
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
The Quantum Space-Time Juan Maldacena Institute for Advanced Study 25 th Solvay Conference October 2011.
GAUGE/GRAVITY AND HEAVY ION PHYSICS How string theory might say something about strong coupling Wilke van der Schee June 29, 2011.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
Instability of Black Holes Induced by Chern-Simons Terms Shin Nakamura (Kyoto Univ.) Based on S.N.-Ooguri-Park, arXiv:
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
1 Energy Loss of a Rotating Quark from Gauge-String Duality K. Bitaghsir Fadafan Shahrood U. of Technology First IPM meeting on LHC physics April 20-24,
Imaginary Chemical potential and Determination of QCD phase diagram
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Chung-Wen Kao Chung Yuan Christian University Taiwan QCD Chiral restoration at finite T and B A study based on the instanton model.
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
The fast life of holographic mesons Aninda Sinha Perimeter Institute, Canada. with Robert Myers arXiv:0802.nnnn Quark Matter 2008, Jaipur, India.
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:
Holographic QCD in the medium
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
Baryon Chemical Potential in AdS/CFT Shin Nakamura 中村 真 Hanyang Univ. and CQUeST (韓国・漢陽大学 ) Ref. S.N.-Seo-Sin-Yogendran, hep-th/ ( Kobayashi-Mateos-Matsuura-Myers,
Holographic Hadrons in dense medium Sang-Jin Sin
Holographic cold nuclear matter as dilute instanton gas 1.Introduction 2.Model of Baryon system 3.D8 brane embedding 4.Chemical potential and phase transition.
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Dynamical Instability of Holographic QCD at Finite Density Shoichi Kawamoto 23 April 2010 at National Taiwan University Based on arXiv: in collaboration.
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Eliezer Rabinovici Hebrew University of Jerusalem, CERN String Theory: Results, Magic and Doubts 16 May 2013 Nobel symposium on LHC results.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Towards understanding the Quark-Gluon Plasma
Toward a Holographic Model of d-wave Superconductors
Raju Venugopalan Brookhaven National Laboratory
A rotating hairy BH in AdS_3
dark matter Properties stable non-relativistic non-baryonic
Weak Interacting Holographic QCD
Properties of the Quark-Gluon Plasma
Quark Mass in Holographic QCD
in collaboration with Y. Nakagawa and K. Matsumoto
Gravity from Entanglement and RG Flow
Hysteresis Curves from 11 dimensions
Finite temperature in modified Soft-Wall AdS/QCD Model
Chengfu Mu, Peking University
Holographic Heavy- Light mesons from non- Abelian DBI
QCD at very high density
Quark number susceptibility with finite chemical potential in hQCD
American Physical Society
Excited QCD 2010, 31 Jan.-6 Feb., 2010 Tatra National Park (Slovakia)
Presentation transcript:

Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev. Lett. 111, (2013)

Outline INTRODUCTION QCD Phase Diagram. AdS/CFT correspondance and holography The phase diagram according to the Sakai Sugimoto model... And then introducing finite B? Spatially Inhomogeneous phases The Inhomogeneous phase according to the Sakai Sugimoto model... And then introducing finite B? Conclusions and Future Work (on the way)

Quantum Chromodynamics (QCD) [Fukushima-Sasaki 2013] Lattice QCD Perturbative QCD

All contributions from the current-current interaction corresponding to the underlying symmetry must be included, not only (even when gauge fields are integrated out) Crucial even at mean field approximation to liquid-gas phase transition of dense quark matter In order for Effective Field Theories to give an accurate description...

Complications in the QCD phase diagram go beyond inclusion of finite density The inclusion of B in this picture is imperative: Chiral Magnetic Spirals Magnetic Catalisys Chiral Magnetic/Separation Effect Phenomenological and Experimental Theoretical side momentum spin Quark Gluon Plasma

Magnetic field in the QCD phase diagram Magnetic catalisys has been observed in effective field theories and lattice QCD (although with unphysical masses) Chemical Potential Chiral Boundary Chirality is locked with the spin So if we apply a magnetic field momentum spin

Just like vector-type interactions, even at mean field level the axial-vector interaction has a nonzero contribution, however it has been assummed to have no effect on the structure on the phase diagram However, it is necessary to address on one important physical effect that has been overlooked up until now, that is, the inevitable formation of the topological current!

Towards a Holographic Representation of QCD The Sakai-Sugimoto model

The Gauge/Gravity Duality Weak Gravity Strong Gravity Strong Coupling Weak Coupling Duality difficult! easy! CFT N=4 Super Yang Mills The strong coupling limit (hard to solve) in gauge theories happens to be dual to the weak gravity in string theory First step to QCD

OOOOO Minkowski Compactify U Holographic dim Properties: 1.SUSY, Conformal 2.No Chiral Symmetry 3.No Confinement Towards a holographic realization of QCD

Confined Deconfined

OOOOO OOOOOOOOO Adding Flavor Close to QCD! 1.SUSY broken 2.Confinement 3.Chiral Symmetry Breaking

Adding Flavor: Chiral Symmetry Breaking L L

Holographic QCD phase diagram

[Bergman Lifschytz Lippert 2009] Holographic QCD phase diagram...Still a question remains

Magnetic field in hQCD and topological current DBI Action Chern-Simons Action Flavor sector action Equations of motion Asymptotic solutions

[Preis, Rebhan, Schmidt 2013] Topological current in the homogeneous chiral surface Presence of quark matter neutron stars!

Spacially modulated region in the phase diagram

Spatially Modulated Phases Inhomogeneous! Effective Chiral models PNJL... Lattice results Chiral Spirals [Bassar-Dunnes-Kharsheev] [Hidaka-Kojo] If the system the system at zero density has a condensate Then the rotated system has the same condensate This may be the case at high densities (Fermi surface realizes a pseudo (1+1)-dim system)

What should we expect at finite B? Reduces the system effectively to a (1+1) dimensions. Axial current is strengthened by strong B Favors spiral configuration Spatial Inhomogeneity + Topological axial current Sakai Sugimoto model hQCD Unperturbative QCD method

Inhomogeneous phase in hQCD EOM decoupled in terms of dual fields Sketch of calculations

[Ooguri-Park 2010] A minimum value for the Chern-Simons coupling constant (at which instabilities can be found) can be determined analitically However the corresponding critical density has to be found numerically [Chuang-Dai-Kawamoto -Lin-Yeh 2011] This instability can be predicted to occur in QGP...Then again what happens at finite B?!

Addition of a magnetic field into the picture results into the breaking of rotational invariance of the EOM corresponding to the fluctuations and thus the system cannot be trivially decoupled in terms of the dual field as usual. So we solve numerically, from the condition that these fluctuations correspond to normalizable modes [Fukushima-Morales 2013]...presence of current changes results drastically!

[Fukushima-Morales 2013] Surprising results! However... Shrinking of Inhomogeneous phase!

Conclusions/Future work Holographic QCD provides us the means to study unpertubatively the effect of the topological axial current in the phase diagram The role played the topological current in the phase diagram is critical to its homogeneous part and inhomogenous phase as well.....(What happens in other effective chiral models? Universal Feature?) Could this Inhomogeneous phase be the dual of the ground state in QCD... (Chiral Spirals?)

Inhomogeneous Phases [Ooguri-Nakamura 2011] When considering coupling to gravity, although the stability condition is modified in more complicated geometries, tachyonic modes can be found Bottom-up approach