A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062,

Slides:



Advertisements
Similar presentations
The fast life of holographic mesons (Rowan Thomson, Andrei Starinets & David Mateos) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Advertisements

Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Heavy Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee Heavy Quark Workshop, BNL December 12-14, 2005 Introduction.
Hard Probes 2006 Urs Achim Wiedemann SUNY Stony Brook and RIKEN BNL The “Not a Theory Summary”-Talk Asilomar, 15 June 2006.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Understanding the Quark-Gluon Plasma via String Theory Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs A. Wiedemann hep-ph/ ,
Large N c QCD Towards a Holographic Dual of David Mateos Perimeter Institute ECT, Trento, July 2004.
The QCD Phase Diagram in Relativistic Heavy Ion Collisions October 24, Inauguration Conference Chiho NONAKA, Nagoya University.
Stability of Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee SQM Workshop, UCLA, March 26-30, 2006 Introduction.
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
Jet quenching at RHIC and LHC from finite endpoint momentum strings Andrej Ficnar Columbia University Hard Probes 2013 November 5, 2013 Andrej Ficnar,
1 The Quark Gluon Plasma and the Perfect Fluid Quantifying Degrees of Perfection Jamie Nagle University of Colorado, Boulder.
Spectral functions for holographic mesons with Rowan Thomson, Andrei Starinets [arXiv: ] TexPoint fonts used in EMF. Read the TexPoint manual before.
QCD Thermodynamics Jean-Paul Blaizot, CNRS and ECT* RHIC Physics in the Context of the Standard Model RBRC June 21,
TIFR Mumbai India Feb Ágnes Mócsy at RBRC 1 Quarkonium as Signal of Deconfinement Ágnes Mócsy Thanks to Sourendu, Saumen, Rajeev, Rajiv!
Measurements of  Production and Nuclear Modification Factor at STAR Anthony Kesich University of California, Davis STAR Collaboration.
Heavy quarkonia in potential models and lattice QCD Péter Petreczky Heavy quark production in heavy ion collisions Purdue University, January 4-6, 2011.
QGP and Hadrons in Dense medium: a holographic 2nd ATHIC based on works with X. Ge, Y. Matsuo, F. Shu, T. Tsukioka(APCTP), archiv:
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Heavy Quarkonium melting with Holographic Potential Defu Hou (CCNU,Wuhan) SQM2008, Beijing, Oct. 6-10, 2008 With Hai-cang Ren, JHEP 0801:029,2008.
Heavy Quarkonium States with the Holographic Potential Defu Hou (CCNU) From Strings to Things, Seattle, May 2008 With Hai-cang Ren, JHEP 0801:029,2008.
1 AdS/CFT Calculations of Parton Energy Loss Jorge Casalderrey-Solana Lawrence Berkeley National Lab. In collaboration with D. Teaney.
The fast life of holographic mesons Aninda Sinha Perimeter Institute, Canada. with Robert Myers arXiv:0802.nnnn Quark Matter 2008, Jaipur, India.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Holographic Thermalization of Quark Gluon Plazma Irina Aref'eva Steklov Mathematical Institute, Moscow II Russian-Spanish Congress Particle and Nuclear.
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Heavy Flavor Productions & Hot/Dense Quark Matter 1 Lattice calculations on Heavy flavor ~ Open and Hidden charm states above Tc ~ Takashi Umeda (BNL)
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
AdS/CFT and Heavy Ion Collisions at RHIC and LHC
Heavy quark potential at non-zero temperature Péter Petreczky Hard Probes 2013, Stellenbosch, South Africa, November 4-8, 2013 Motivation : the study and.
Ágnes Mócsy FIAS & ITP, Frankfurt Quarkonia Correlators above Deconfinement * Calculating correlators * Why interested in quarkonia correlators * Charm.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 0 Study of the Quark Gluon Plasma with Hadronic Jets What:
Workshop on QCD and RHIC Physics, Hefei, July Heavy Flavors in High Energy Nuclear Collisions ZHUANG Pengfei (Tsinghua University, Beijing) ● J/Psi.
Theory aspects of quarkonia production in heavy ion collisions Peter Petreczky Current status of the theory:
Quarkonia in Quark-Gluon Plasma Cheuk-Yin Wong Oak Ridge National Laboratory Dubna July 14, 2008 Introduction Static properties of quarkonia in QGP Reactions.
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Early time dynamics in Heavy Ion Collisions, McGill University, Montréal,
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
Hydrodynamic Flow from Fast Particles Jorge Casalderrey-Solana. E. V. Shuryak, D. Teaney SUNY- Stony Brook.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Jet Quenching and Quarkonium Dissociation in Heavy Ion Collisions and String Theory Urs Achim Wiedemann CERN PH-TH Department 28 June 2007.
1 Properties of Quarkonia at T c Su Houng Lee In collaboration with Kenji Morita.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
Quarkonium Dissociation Temperature in Hot QCD medium within a quasi-particle model.
APCTP of Transportation Siyoung Nam (CQUeST) Dissociation of Quarkonia in Quark Medium Based on hep-th/1512.XXXXX W/ Bum-Hoon Lee, Chanyong Park.
Quarkonium suppression in Heavy Ion Collisions and AdS/CFT Hong Liu Massachusetts Institute of Technology HL, K. Rajagopal, U. A. Wiedemann hep-ph/ ,
Towards understanding the Quark-Gluon Plasma
Review of ALICE Experiments
Spatial charmonium correlators and spectral functions
Heavy quark potentials and spectral functions Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Theory aspects of quarkonia production in heavy ion collisions
Raju Venugopalan Brookhaven National Laboratory
Cyrille Marquet Columbia University
String theory and heavy ion collisions
Quarkonia at finite temperature: lattice results Peter Petreczky
7/6/2018 Nonperturbative Approach to Equation of State and Collective Modes of the QGP Shuai Y.F. Liu and Ralf Rapp Cyclotron Institute + Dept. of Physics.
Charmonium production in hot and dense matter Péter Petreczky
Properties of the Quark-Gluon Plasma
برخورد یون های سنگین در LHC همایش یک روزه فیزیک LHCبا تاکید بر هیگز
Overview of Potential models at finite temperature Péter Petreczky
Introduction of Heavy Ion Physics at RHIC
用重味探测夸克胶子等离子体 Heavy Flavor as a Probe of Quark-Gluon Plasma
Relativistic heavy ion collisions
Presentation transcript:

A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/ , hep-ph/ Qudsia Ejaz, Thomas Faulkner, HL, Krishna Rajagopal, Urs Wiedemann arXiv:

Plan Heavy ion collisions and AdS/CFT J/ψ suppression A prediction from string theory Propagation for heavy quark mesons in a hot medium

QCD QCD has presented us many fascinating dynamical phenomena: Recently, heavy ion collision experiments opened new windows into probing dynamical phenomena in QCD: Confinement, chiral symmetry breaking, asymptotic freedom, internal structure of nucleons …… largely guided by experiments, great challenges for theorists. Many body physics, collective phenomena, ……. thermalization, finite temperature, ……

QCD Phase diagram Smooth crossover

Relativistic Heavy ion collisions

Relativistic heavy ion collisions Deconfinement crossover in QCD: T C ~ 170 MeV Deconfinement crossover in QCD: T C ~ 170 MeV LHC: Pb + Pb (2009) SPS (CERN): RHIC (2000): Au+Au : center of mass energy per pair of nucleons Au: 197 nucleons; Total: 39.4 TeV Temperature (1 fm after collision) ~ 250 MeV Baryon chemical potential ~ 27 MeV

QCD Phase diagram RHIC

Quark-gluon fluid of RHIC RHIC QGP: strongly coupled, nearly ideal fluid (sQGP) But information on dynamical quantities: scarce and indirect Main theoretical tool for strong coupling: Lattice calculation New theoretical tools are needed. But information on dynamical quantities: scarce and indirect RHIC Experiments revealed many dynamical phenomena: thermalization, collective flow, jet quenching, J/ψ suppression, ……… Perturbation theory: inadequate Many new challenges

String theory to the rescue! AdS/CFT techniques have potential to make important impact !

It is NOT yet known what is the precise string theory description of QCD.

What are the commonalities and differences of quark-gluon plasmas in different gauge theories? Discovery machine: experiments deeper understanding of both QCD and AdS/CFT Perturbative Lattice Strongly coupled theories from AdS/CFT experiments AdS/CFT

Heavy ion collisions and AdS/CFT String theory techniques provide qualitative, and semi- quantitative insights and predictions regarding properties of strongly interacting quark-gluon plasma: Shear viscosity Jet quenching Quarkonium suppression Things work better than expected !? heavy quark diffusion Thermodynamic properties …………… Many mysteries remain!

Quarkonium suppression: a prediction for LHC or RHIC

Heavy Quarkonia Charm: J/ψ ( ) : BNL and SLAC (1974, November revolution) Heavy quakonia like J/ψ could survive deconfinement transition.

Heavy quarkonia are good probes of QGP The potential between the quark and anti-quark in a quarkonium bound state is sensitive to the screening of the plasma. A hallmark of QGP is that it screens color objects. more unstable

Quarkonium suppression J/ψ Heavy ion collisions: color screening in the produced medium J/ψ suppression Matsui and Satz (1987)

Screening of heavy quarks in the Quark gluon plasma O.Kaczmarek, F. Karsch, P.Petreczky, F. Zantow, hep-lat/ Heavy quark potential for T > T C Screening length:

Quarkonia above T C : T diss ~ 2 T C : T diss ~ 3 T C Asakawa, Hatsuda; Datta, Karsch, Petreczky, Wetzorke Dissociation temperature T d d: size of a meson Charmonium spectra at different temperatures Satz, hep-ph/ Lattice estimate :

Basic theoretical questions How does the screening effect depend on the velocity ? To understand the p T dependence: Velocity dependence of the dissociation temperature T d ? Lattice: Hard Propagation of J/ψ in a QGP. Not known in QCD Try to gain insight from string theory by studying relatives of QCD.

Static quark potential Gauge theory description: gluon flux lines String theory description: Our (3+1)-dim world, String lives in one extra dimension Gravity approximation: finding minimal energy string shape Maldacena; Rey, Yee

Screening of quarks in a QGP (3+1)-dim world at temperature T, event horizon Quarks are screened LsLs N =4 :, QCD (2 flavor): (lattice) Rey, Theisen Yee; Brandhuber, Itzhaki, Sonnenschein Yankielowicz ……..

Finite velocity scaling Finding string shape of minimal energy Event horizon Moving at a finite velocity v HL,Rajagopal,Wiedemann Chernicoff, Garcia, Guijosa Peeters, Sonnenschein, Zamaklar

Dissociation temperature T d : d: size of a meson this suggests: Does the scaling apply to QCD?

A simple argument In a rest frame of quark pair, the medium is boosted:

If similar kind of scaling does apply to QCD, any implication? Should be used as a basic theoretical input in any phenomenological modeling of J/ψ suppression

Quarkonium suppression: a prediction via string theory Heavy quark mesons with larger velocity dissociate at a lower temperature HL,Rajagopal,Wiedemann This effect may be significant and tested at RHIC II or LHC Could lead to significant suppression at large P T. J/psi RHIC has not reached T d for J/ψ.

Quark Matter 2008, Jaipur, India, Feb. 4-10, Zebo Tang, USTC/BNL Nuclear modification factor R AA Double the p T range to 10GeV/c Consistent with no suppression at high p T : R AA (p T >5 GeV/c) = 0.89±0.20 Indicates R AA increase from low p T to high p T Different from expectation of most models: AdS/CFT: H. Liu, K. Rajagopal and U.A. Wiedemann, PRL 98, (2007) and hep-ph/ Two Component Approach: X. Zhao and R. Rapp, hep-ph/

Charmonium Spectral functions Study of genuine quarkonia requires understanding behavior of spectral functions. J/ψ : poles in the complex plane. Velocity effect: Can AdS/CFT help? Need genuine mesons. So far: crude extrapolation from infinite heavy quark potential. Satz,

Adding flavors in AdS/CFT Karch,Katz N =4 SYM theory does contain dynamical quarks. Add N F hypermultiplets in fundamental representation to N =4 SYM  N =2 theory with flavors On gravity side, this can be achieved by adding N F D7-branes to the AdS 5 x S 5 geometry. mqmq Mesons: excitations on D7-branes. small T/m q Aharony, Fayyazuddin, Maldacena,

Meson masses Size of a meson: Bare quark mass: Meson masses: Babington, Erdmenger, Evans, Guralnik, Kirsch; Kruczenski, Mateos, Myers, Winters;

Meson Dissociation Mateos, Myers and Thomson, Hoyos, Landsteiner, MonteroHoyos Landsteiner Montero Gravity approximation: Mesons are stable at low temperature. Meson dissociation: We would like to understand how the screening effect is reflected in the meson spectrum. Babington, Erdmenger, Evans, Guralnik, Kirsch

Dispersion relation V 0 : speed of light at the tip Mateos, Myers and Thomson In the hot medium, mesons travel at a velocity smaller than the vacuum speed of light !

General results In the large k limit: (exact analytic result) v 0 is precisely given by the local speed of light at the tip. Ejaz, Faulkner, HL, Rajagopal, Wiedemann

Embedding of the brane and fluctuations Embedding of D7-brane: Action for fluctuations: (scalar mesons) (can only be solved numerically) Solving the Laplace equations: discrete spectrum, dispersion relations

Large k limit In the large k limit, the wave equations for mesons become that of a four-dimensional spherical harmonic oscillator localized near the tip of the brane and thus be solved exactly. Wave function

Group Velocity T2T2 T1T1 T3T3 T 3 > T 2 > T 1 maximum

Speed limit at a generic temperature Stable Mesons v 0 (T) “T d (v)’’ Near T d, v 0 (T)  0, for arbitrary large k. Inference from infinitely heavy quark potential remarkably accurate.

Size of a meson Semi-classical analysis : This gives maximal meson size at a given v and T D7-brane story: from IR/UV connection,

why the wave function of a large k meson is localized at tip? Increasing k, the meson becomes more loosely bounded, and its size should increase, eventually to the maximally possible size allowed by the v 0 (T). From IR/UV connection, its wave function should more and more localized to the tip.

Summary (Real part) of the dispersions relation and wave function of hologrpahic mesons match very well with (in some sense are controlled by) the screening behavior. In order to understand the ``dissociation’’, one needs to understand the momentum dependence of the imaginary part of dispersion relation. HL, Faulkner, in progress Fast mesons: good probes of the geometry near the horizon

Do these features exist in QCD? Velocity scaling of screening length Speed limit for heavy quark mesons Velocity scaling of dissociation temperature Dramatic slowdown near T d All of them are rather qualitative features, which may not depend on the precise details of the underlying theory. Local speed of light in the bulk Far from being obvious in perturbation theory !

Is the modified dispersion relation observable? v>v 0 Will J/ψ break apart? Or will it slow down and survive the medium What happens when medium disappears? Time delay? J/ψ suppression ………………

Conclusion String theorists have a lot to learn from experiments. String theorists also have a lot to offer for experiments.