Multiple comparison correction

Slides:



Advertisements
Similar presentations
The General Linear Model (GLM)
Advertisements

Mkael Symmonds, Bahador Bahrami
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, October 2008.
Event-related fMRI (er-fMRI)
Multiple comparison correction
Statistical Inference and Random Field Theory Will Penny SPM short course, London, May 2003 Will Penny SPM short course, London, May 2003 M.Brett et al.
Experimental design of fMRI studies Methods & models for fMRI data analysis in neuroeconomics April 2010 Klaas Enno Stephan Laboratory for Social and Neural.
Group analyses of fMRI data Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and Neural.
Statistical Inference and Random Field Theory Will Penny SPM short course, Kyoto, Japan, 2002 Will Penny SPM short course, Kyoto, Japan, 2002.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research University of Zurich With many thanks for slides & images to: FIL Methods.
Topological Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2014 Many thanks to Justin.
Classical inference and design efficiency Zurich SPM Course 2014
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
07/01/15 MfD 2014 Xin You Tai & Misun Kim
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
Multiple comparison correction Methods & models for fMRI data analysis 18 March 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
The General Linear Model (GLM)
Comparison of Parametric and Nonparametric Thresholding Methods for Small Group Analyses Thomas Nichols & Satoru Hayasaka Department of Biostatistics U.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
False Discovery Rate Methods for Functional Neuroimaging Thomas Nichols Department of Biostatistics University of Michigan.
Giles Story Philipp Schwartenbeck
Multiple Comparison Correction in SPMs Will Penny SPM short course, Zurich, Feb 2008 Will Penny SPM short course, Zurich, Feb 2008.
With many thanks for slides & images to: FIL Methods group, Virginia Flanagin and Klaas Enno Stephan Dr. Frederike Petzschner Translational Neuromodeling.
Random Field Theory Will Penny SPM short course, London, May 2005 Will Penny SPM short course, London, May 2005 David Carmichael MfD 2006 David Carmichael.
Basics of fMRI Inference Douglas N. Greve. Overview Inference False Positives and False Negatives Problem of Multiple Comparisons Bonferroni Correction.
Random field theory Rumana Chowdhury and Nagako Murase Methods for Dummies November 2010.
Computational Biology Jianfeng Feng Warwick University.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
SPM Course Zurich, February 2015 Group Analyses Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London With many thanks to.
Multiple comparison correction Methods & models for fMRI data analysis October 2013 With many thanks for slides & images to: FIL Methods group & Tom Nichols.
Multiple comparisons in M/EEG analysis Gareth Barnes Wellcome Trust Centre for Neuroimaging University College London SPM M/EEG Course London, May 2013.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
1 Inference on SPMs: Random Field Theory & Alternatives Thomas Nichols, Ph.D. Department of Statistics & Warwick Manufacturing Group University of Warwick.
Methods for Dummies Random Field Theory Annika Lübbert & Marian Schneider.
Classical Inference on SPMs Justin Chumbley SPM Course Oct 23, 2008.
Contrasts & Statistical Inference
**please note** Many slides in part 1 are corrupt and have lost images and/or text. Part 2 is fine. Unfortunately, the original is not available, so please.
Random Field Theory Will Penny SPM short course, London, May 2005 Will Penny SPM short course, London, May 2005.
Random Field Theory Ciaran S Hill & Christian Lambert Methods for Dummies 2008.
Event-related fMRI Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Chicago, Oct 2015.
The False Discovery Rate A New Approach to the Multiple Comparisons Problem Thomas Nichols Department of Biostatistics University of Michigan.
Spatial Smoothing and Multiple Comparisons Correction for Dummies Alexa Morcom, Matthew Brett Acknowledgements.
Methods for Dummies Second level Analysis (for fMRI) Chris Hardy, Alex Fellows Expert: Guillaume Flandin.
Statistical Analysis An Introduction to MRI Physics and Analysis Michael Jay Schillaci, PhD Monday, April 7 th, 2007.
SPM short – Mai 2008 Linear Models and Contrasts Stefan Kiebel Wellcome Trust Centre for Neuroimaging.
Multiple comparisons problem and solutions James M. Kilner
Topological Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2015 With thanks to Justin.
Multiple comparison correction
False Discovery Rate for Functional Neuroimaging Thomas Nichols Department of Biostatistics University of Michigan Christopher Genovese & Nicole Lazar.
Group Analyses Guillaume Flandin SPM Course London, October 2016
Topological Inference
The general linear model and Statistical Parametric Mapping
2nd Level Analysis Methods for Dummies 2010/11 - 2nd Feb 2011
Inference on SPMs: Random Field Theory & Alternatives
Wellcome Trust Centre for Neuroimaging University College London
Methods for Dummies Random Field Theory
Multiple comparisons in M/EEG analysis
Topological Inference
Contrasts & Statistical Inference
Inference on SPMs: Random Field Theory & Alternatives
Inference on SPMs: Random Field Theory & Alternatives
Statistical Parametric Mapping
The general linear model and Statistical Parametric Mapping
Contrasts & Statistical Inference
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
Contrasts & Statistical Inference
Presentation transcript:

Multiple comparison correction Klaas Enno Stephan Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich Functional Imaging Laboratory (FIL) Wellcome Trust Centre for Neuroimaging University College London With many thanks for slides & images to: FIL Methods group Methods & models for fMRI data analysis in neuroeconomics 21 October 2009

Overview of SPM p <0.05 Image time-series Kernel Design matrix Statistical parametric map (SPM) Realignment Smoothing General linear model Statistical inference Gaussian field theory Normalisation p <0.05 Template Parameter estimates

Voxel-wise time series analysis model specification parameter estimation hypothesis statistic Time Time BOLD signal single voxel time series SPM

Inference at a single voxel NULL hypothesis H0: activation is zero u  = p(t > u | H0)  p-value: probability of getting a value of t at least as extreme as u. If  is small we reject the null hypothesis. We can choose u to ensure a voxel-wise significance level of . t distribution t = contrast of estimated parameters variance estimate

Student's t-distribution t-distribution is an approximation to the normal distribution for small samples For high degrees of freedom (large samples), t approximates Z. Sn = sample standard deviation  = population standard deviation -5 -4 -3 -2 -1 1 2 3 4 5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 n =1 =2 =5 =10 = ¥

Types of error Actual condition Test result H0 true H0 false False positive (FP) Type I error α True positive (TP) Reject H0 Test result False negative (FN) Type II error β Failure to reject H0 True negative (TN) specificity: 1- = TN / (TN + FP) = proportion of actual negatives which are correctly identified sensitivity (power): 1- = TP / (TP + FN) = proportion of actual positives which are correctly identified

Assessing SPMs High Threshold Med. Threshold Low Threshold Good Specificity Poor Power (risk of false negatives) Poor Specificity (risk of false positives) Good Power

Inference on images Noise Signal Signal+Noise

Use of ‘uncorrected’ p-value, =0.1 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Use of ‘uncorrected’ p-value, =0.1 Percentage of Null Pixels that are False Positives Using an ‘uncorrected’ p-value of 0.1 will lead us to conclude on average that 10% of voxels are active when they are not. This is clearly undesirable. To correct for this we can define a null hypothesis for images of statistics.

Family-wise null hypothesis Activation is zero everywhere. If we reject a voxel null hypothesis at any voxel, we reject the family-wise null hypothesis A false-positive anywhere in the image gives a Family Wise Error (FWE). Family-Wise Error (FWE) rate = ‘corrected’ p-value

Use of ‘uncorrected’ p-value, =0.1 Use of ‘corrected’ p-value, =0.1 FWE

The Bonferroni correction The family-wise error rate (FWE), , for a family of N independent voxels is α = Nv where v is the voxel-wise error rate. Therefore, to ensure a particular FWE, we can use v = α / N BUT ...

The Bonferroni correction Independent voxels Spatially correlated voxels Bonferroni correction assumes independence of voxels  this is too conservative for brain images, which always have a degree of smoothness

Smoothness (inverse roughness) roughness = 1/smoothness intrinsic smoothness MRI signals are aquired in k-space (Fourier space); after projection on anatomical space, signals have continuous support diffusion of vasodilatory molecules has extended spatial support extrinsic smoothness resampling during preprocessing matched filter theorem  deliberate additional smoothing to increase SNR described in resolution elements: "resels" resel = size of image part that corresponds to the FWHM (full width half maximum) of the Gaussian convolution kernel that would have produced the observed image when applied to independent voxel values # resels is similar, but not identical to # independent observations can be computed from spatial derivatives of the residuals

(“lattice approximation”) Random Field Theory Consider a statistic image as a discretisation of a continuous underlying random field with a certain smoothness Use results from continuous random field theory Discretisation (“lattice approximation”)

Euler characteristic (EC) Topological measure threshold an image at u EC # blobs at high u: p (blob) = E [EC] therefore (under H0) FWE,  = E [EC]

Euler characteristic (EC) for 2D images R = number of resels ZT = Z value threshold We can determine that Z threshold for which E[EC] = 0.05. At this threshold, every remaining voxel represents a significant activation, corrected for multiple comparisons across the search volume. Example: For 100 resels, E [EC] = 0.049 for a Z threshold of 3.8. That is, the probability of getting one or more blobs where Z is greater than 3.8, is 0.049. Expected EC values for an image of 100 resels

Euler characteristic (EC) for any image Computation of E[EC] can be generalized to volumes of any dimension, shape and size (Worsley et al. 1996). When we have an a priori hypothesis about where an activation should be, we can reduce the search volume: mask defined by (probabilistic) anatomical atlases mask defined by separate "functional localisers" mask defined by orthogonal contrasts (spherical) search volume around previously reported coordinates Worsley et al. 1996. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–83. small volume correction (SVC)

Computing EC wrt. search volume and threshold E(u)  () ||1/2 (u 2 -1) exp(-u 2/2) / (2)2   Search region   R3 (  volume ||1/2  roughness Assumptions Multivariate Normal Stationary* ACF twice differentiable at 0 Stationarity Results valid w/out stationarity More accurate when stat. holds

Voxel, cluster and set level tests Regional specificity Sensitivity Voxel level test: intensity of a voxel Cluster level test: spatial extent above u Set level test: number of clusters above u  

False Discovery Rate (FDR) Familywise Error Rate (FWE) probability of one or more false positive voxels in the entire image False Discovery Rate (FDR) FDR = E(V/R) (R voxels declared active, V falsely so) proportion of activated voxels that are false positives

False Discovery Rate - Illustration Noise Signal Signal+Noise

Control of Per Comparison Rate at 10% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of False Positives Control of Familywise Error Rate at 10% Occurrence of Familywise Error FWE Control of False Discovery Rate at 10% 6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% Percentage of Activated Voxels that are False Positives

Benjamini & Hochberg procedure Select desired limit q on FDR Order p-values, p(1)  p(2)  ...  p(V) Let r be largest i such that Reject all null hypotheses corresponding to p(1), ... , p(r). 1 p(i) p-value p(i)  (i/V)  q (i/V)  q q = proportion of all selected voxels (i.e. i/V) for which null hypothesis is rejected i/V 1 i/V = proportion of all selected voxels Benjamini & Hochberg, JRSS-B (1995) 57:289-300

Real Data: FWE correction with RFT Threshold S = 110,776 2  2  2 voxels 5.1  5.8  6.9 mm FWHM u = 9.870 Result 5 voxels above the threshold -log10 p-value

Real Data: FWE correction with FDR Threshold u = 3.83 Result 3,073 voxels above threshold

Caveats concerning FDR Current methodological discussions concern the question whether standard FDR implementations are actually valid for neuroimaging data. Chumbley & Friston 2009, NeuroImage: the fMRI signal is spatially extended, it does not have compact support → inference should therefore not be about single voxels, but about topological features of the signal (e.g. peaks or clusters)

Caveats concerning FDR “Imagine that we declare a hundred voxels significant using an FDR criterion. 95 of these voxels constitute a single region that is truly active. The remaining five voxels are false discoveries and are dispersed randomly over the search space. In this example, the false discovery rate of voxels conforms to its expectation of 5%. However, the false discovery rate in terms of regional activations is over 80%. This is because we have discovered six activations but only one is a true activation.” (Chumbley & Friston 2009, NeuroImage) Possible alternative: FDR on topological features (e.g. peaks, clusters)

Conclusions Corrections for multiple testing are necessary to control the false positive risk. FWE Very specific, not so sensitive Random Field Theory Inference about topological features (peaks, clusters) Excellent for large sample sizes (e.g. single-subject analyses or large group analyses) Afford littles power for group studies with small sample size  consider non-parametric methods (not discussed in this talk) FDR Less specific, more sensitive Interpret with care! represents false positive risk over whole set of selected voxels voxel-wise inference (which has been criticised)

Further reading Chumbley JR, Friston KJ. False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage. 2009;44(1):62-70. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690-9. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002 Apr;15(4):870-8. Worsley KJ Marrett S Neelin P Vandal AC Friston KJ Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 1996;4:58-73.

Thank you