Algorithms & Computer Chess A presentation by Zachary Fiskin Christopher Cruzen.

Slides:



Advertisements
Similar presentations
Adversarial Search Chapter 6 Sections 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Advertisements

Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Adversarial Search We have experience in search where we assume that we are the only intelligent being and we have explicit control over the “world”. Lets.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
Games & Adversarial Search
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2008.
Adversarial Search Chapter 5.
Application of Artificial intelligence to Chess Playing Capstone Design Project 2004 Jason Cook Bitboards  Bitboards are 64 bit unsigned integers, with.
Adversarial Search CSE 473 University of Washington.
Hoe schaakt een computer? Arnold Meijster. Why study games? Fun Historically major subject in AI Interesting subject of study because they are hard Games.
Artificial Intelligence for Games Game playing Patrick Olivier
An Introduction to Artificial Intelligence Lecture VI: Adversarial Search (Games) Ramin Halavati In which we examine problems.
Search Strategies.  Tries – for word searchers, spell checking, spelling corrections  Digital Search Trees – for searching for frequent keys (in text,
1 Adversarial Search Chapter 6 Section 1 – 4 The Master vs Machine: A Video.
Games CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Chess AI’s, How do they work? Math Club 10/03/2011.
Module 3 Chess 101 Strategy Strategy refers to an overall plan to achieve a goal In every game you play your goal should be to checkmate your opponent,
Minimax and Alpha-Beta Reduction Borrows from Spring 2006 CS 440 Lecture Slides.
State Space 4 Chapter 4 Adversarial Games. Two Flavors Games of Perfect Information ◦Each player knows everything that can be known ◦Chess, Othello Games.
Games and adversarial search
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Ch.6: Adversarial Search Fall 2008 Marco Valtorta.
Min-Max Trees Based on slides by: Rob Powers Ian Gent Yishay Mansour.
Shallow Blue Project 2 Due date: April 5 th. Introduction Second in series of three projects This project focuses on getting AI opponent Subsequent project.
MAE 552 – Heuristic Optimization Lecture 28 April 5, 2002 Topic:Chess Programs Utilizing Tree Searches.
Online Chess Project 3 Due date: April 17 th. Introduction Third in series of three projects This project focuses on adding online support –2 players.
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2006.
CIS 310: Visual Programming, Spring 2006 Western State College 310: Visual Programming Othello.
Adversarial Search: Game Playing Reading: Chess paper.
double AlphaBeta(state, depth, alpha, beta) begin if depth
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
1 Adversary Search Ref: Chapter 5. 2 Games & A.I. Easy to measure success Easy to represent states Small number of operators Comparison against humans.
Hex Combinatorial Search in Game Strategy by Brandon Risberg May 2006Menlo School.
Game Trees: MiniMax strategy, Tree Evaluation, Pruning, Utility evaluation Adapted from slides of Yoonsuck Choe.
Minimax Trees: Utility Evaluation, Tree Evaluation, Pruning CPSC 315 – Programming Studio Spring 2008 Project 2, Lecture 2 Adapted from slides of Yoonsuck.
CISC 235: Topic 6 Game Trees.
Lecture 5 Note: Some slides and/or pictures are adapted from Lecture slides / Books of Dr Zafar Alvi. Text Book - Aritificial Intelligence Illuminated.
Game Playing Chapter 5. Game playing §Search applied to a problem against an adversary l some actions are not under the control of the problem-solver.
Adversarial Search CS30 David Kauchak Spring 2015 Some material borrowed from : Sara Owsley Sood and others.
Prepared by : Walaa Maqdasawi Razan Jararah Supervised by: Dr. Aladdin Masri.
Computer Go : A Go player Rohit Gurjar CS365 Project Proposal, IIT Kanpur Guided By – Prof. Amitabha Mukerjee.
Game Playing Chapter 5. Game playing §Search applied to a problem against an adversary l some actions are not under the control of the problem-solver.
Mark Dunlop, Computer and Information Sciences, Strathclyde University 1 Algorithms & Complexity 5 Games Mark D Dunlop.
Adversarial Search Chapter 6 Section 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Game Playing. Towards Intelligence? Many researchers attacked “intelligent behavior” by looking to strategy games involving deep thought. Many researchers.
Games. Adversaries Consider the process of reasoning when an adversary is trying to defeat our efforts In game playing situations one searches down the.
1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Cilk Pousse James Process CS534. Overview Introduction to Pousse Searching Evaluation Function Move Ordering Conclusion.
Backtracking and Games Eric Roberts CS 106B January 28, 2013.
GAME PLAYING 1. There were two reasons that games appeared to be a good domain in which to explore machine intelligence: 1.They provide a structured task.
Each piece is represented by a symbol. The pieces all stand in the same position at the start of the game the pieces are the Rook, the Knight, the Bishop,
Game tree search Chapter 6 (6.1 to 6.3 and 6.6) cover games. 6.6 covers state of the art game players in particular. 6.5 covers games that involve uncertainty.
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
CompSci Backtracking, Search, Heuristics l Many problems require an approach similar to solving a maze ä Certain mazes can be solved using the.
CPS Backtracking, Search, Heuristics l Many problems require an approach similar to solving a maze ä Certain mazes can be solved using the “right-hand”
Adversarial Search Chapter 6 Section 1 – 4. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Adversarial Search Chapter 5 Sections 1 – 4. AI & Expert Systems© Dr. Khalid Kaabneh, AAU Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
ADVERSARIAL SEARCH Chapter 6 Section 1 – 4. OUTLINE Optimal decisions α-β pruning Imperfect, real-time decisions.
Understanding AI of 2 Player Games. Motivation Not much experience in AI (first AI project) and no specific interests/passion that I wanted to explore.
Adversarial Search and Game-Playing
Adversarial Search Chapter 5.
Adversarial Search.
Games & Adversarial Search
CS51A David Kauchak Spring 2019
Adversarial Search Chapter 6 Section 1 – 4.
Unit II Game Playing.
Minimax Trees: Utility Evaluation, Tree Evaluation, Pruning
Presentation transcript:

Algorithms & Computer Chess A presentation by Zachary Fiskin Christopher Cruzen

What is computer chess? We define computer chess as the use of hardware and software design to create an autonomous (without human aid) chess player.

How smart is the computer? The computer you play is NOT “smart”. Most chess computers play the game blindly, without specific strategies or habits present. A typical human player might learn these over time, but the machine will not think in the same fashion. The computer is not limited to seeing only a number of possible moves at a time, but can see every possible move for a given turn.

Limited Knowledge If the computer can know all the moves possible, why is it that I can defeat it on my own machine? A computer only has so much memory. It, physically, can not remember every unique board state or combination of moves at one time. The number of board states is simply too astronomical.

Game Complexity Turn 1 White has a choice of any one of [20] moves to begin the game. (16 pawn moves + 4 knight moves) Black has the same number of options. [20] [20] x [20] = [400] possible states    

Game Complexity

How the computer thinks A typical chess computer will save a library of game states in a tree type data structure. From each state, the tree branches off into every possible state to come from it. This results in a pseudo-complete map of every move in the game. Problem: How does the computer decide which of these moves works best in the current game?

Heuristics Definition: “Short-cuts for complex problem solving which don’t guarantee an optimal solution, but deliver a satisfactory result in a short time.” Two Primary Algorithms Forward Minmax with Alpha-Beta Pruning Endgame Theory

Forward Minmax with Alpha-Beta Pruning Traverses predefined height Evaluates each move Value assigned by set of factors Alpha-Beta Pruning Ignore low scores Increase time spent on ‘good’ moves

Endgame Theory A reversed approach to the opening is common. Instead of finding the best possible next-state for the game, the computer tries to find the current game-state through a series of moves from a desired end-state. This is simpler than the opening due to reduced piece count.

Pruning Methods 1.Transposition Tables Archiving move analysis for similar situations later in the game 2.Refutation Tables Archiving certain types of universally disadvantageous moves to save processing time for other possibilities 3.Pondering “Thinking” during the opponent’s turn

Advancing into other fields

Question & Answer

Works Cited Estimated Board State limit: Heuristics: Minmax Algorithm: explained/

Images used from… Fallen king: beginchess.com Netflix Icon: / iRobot Image: Minmax Diagram: Master Chef: Confused chess player: