Lecture for Tuesday September 23, 2003 What’s due? CH2 problem set Assignments: CH4 problems: 1-5, 8, 10, 11, 14, 16, 17, 21, 22 What’s due Thursday 9/25?

Slides:



Advertisements
Similar presentations
Mendelian Genetics (The Inheritance of Many Traits)
Advertisements

Chapter 14~ Mendel & The Gene Idea
Mendelian Genetics Objectives:
Genetics Gregor Mendel. Gregor Johann Mendel ► Gregor Mendel In 1865 turned the study of heredity into a science ► His work was so brilliant and unprecedented.
Chapter 9 Patterns of Inheritance
Announcements Exam 1 next week, 9/19, 9/20 in testing center. Covers chapters 1 through 4, with emphasis on material: from lectures through 9/13, from.
Extensions of Mendelian Genetics
Variation, probability, and pedigree
Chapter 4: Modification of Mendelian Ratios
Genetics  What accounts for the passing of genetic traits from parents to offspring?  Are traits blended in the offspring?  Or: are traits inherited.
Mendelian Inheritance and Exception and Extensions of Mendelian Inheritance.
Transmission Genetics: Heritage from Mendel 2. Mendel’s Genetics Experimental tool: garden pea Outcome of genetic cross is independent of whether the.
Mendelian Genetics.
Genotype vs Phenotype Genotype: An organism’s genetic makeup which consists of the alleles that an organism inherits from it’s parents (ex: Ee, EE, or.
Biology, 9th ed,Sylvia Mader
Who is the Father of Genetics?. Mendel a type of gene that is hidden by a dominant gene.
Genetics (10.2, 10.3, Ch.11) SB2. Students will analyze how biological traits are passed on to successive generations. (c) Using Mendel’s laws, explain.
Mendel and Genetics Terms and Protocols Mendel’s Experiments Probability Modern Additions & Modifications Mendelian Genetics and Humans.
Mendel & Genetics Review Powerpoint
Mendel performed cross-pollination in pea plants.
Exploring Mendelian Genetics Section 11-3 Objectives: 7.0 Apply Mendel's law to determine phenotypic and genotypic probabilities of offspring. 7.1 Defining.
Chapter 8 Introduction to Genetics
Genetics Chapter 12.
Chapter 4: Modification of Mendelian Ratios Allele *Wild-type allele *Mutant allele Conventional symbols for alleles: recessive allele - initial letter.
Dihybrid (or greater) Crosses: Review For either genotype or phenotype, the expected outcomes of a particular cross can be calculated by multiplying the.
GENETICS. Gregor Mendel considered the father of genetics Studied Pea Plants to learn about the transmission of traits from parents to offspring Trait.
Chapter 3 – Basic Principles of Heredity. Johann Gregor Mendel (1822 – 1884) Pisum sativum Rapid growth; lots of offspring Self fertilize with a single.
Patterns of Inheritance Chapter 10. Blending Hypothesis of Inheritance Trait Trait A variation of a particular characteristic A variation of a particular.
Mendelian Heredity (Fundamentals of Genetics) CH9 pg 173.
*Unit factors in pairs- genetic characteristics are controlled by unit factors that exist in pairs in individual organisms *Principle of Dominance and.
1 Variation and probability Gamete production is source of variation and genetic diversity, an advantage of sex. –As a result of segregation and independent.
1 4 Chapter 14~ Mendel & The Gene Idea. 2 Mendel’s Discoveries 4 Blending- Hereditary Material –Both parents contribute genetic material 4 Inheritable.
Genes Units of information about specific traits
Lecture for Thursday September 25, 2003 What’s due? CH3 problem set Assignments: Study for Exam! Today’s lecture: Review material from 9/23 Genes on the.
PATTERNS OF INHERITANCE CAPTER 10. Pre-Mendel’s Theories  Blending Hypothesis: when parents with different traits have offspring, this will always show.
Who was Mendel? Mendel – first to gather evidence of patterns by which parents transmit genes to offspring.
Basic Genetics Gregor Mendel The Father of Genetics.
Observing Patterns in Inherited Traits Chapter 7.
Mendelian Genetics Ch 14.
Mendelian Genetics Review! Genetic Terms: P = parental generation of a cross F1 = (first filial) the first generation after the parental (the results of.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Mendel’s Legacy Chapter 9 Gregor Mendel The study of how.
Chapter 4: Modification of Mendelian Ratios Allele *Wild-type allele *Mutant allele Conventional symbols for alleles: recessive allele- initial letter.
How do we account for genetic variation? *Independent assortment *Crossing over *Random fertilization Independent Assortment: Cross over:
Chapter 14: Mendel & The Gene Idea Quantitative approach to science Pea plants Austrian Monk.
Chapter 14 Mendel and the Gene Idea. The “ blending ” hypothesis is the idea that genetic material from the two parents blends together (like blue and.
1 Variation, probability, and pedigree Gamete production is source of variation and genetic diversity, an advantage of sex. –As a result of segregation.
Chapter 3 Lecture Concepts of Genetics Tenth Edition Mendelian Genetics.
Wheeler High School The Center for Advanced Studies in Science, Math & Technology Post-AP DNA/Genetics – Ms. Kelavkar Course Introduction Genetics Lecture.
Chapter 4: Modification of Mendelian Ratios Honors Genetics
Chapter 4: Modification of Mendelian Ratios Honors Genetics
Principles of Heredity Chapter 8. Gregor Mendel Father of Genetics –1860’s Austrian Monk –Made the 1 st detailed investigation of how traits are inherited.
A. Heredity: The passing of traits (characters) from parents to offspring B. Genetics: The branch of biology that studies heredity. 1. Gregor Mendel:
Chapter 14. Mendel and Heredity  Gregor Mendel – Austrian Munk  Worked with heredity in pea plants  Wanted to determine how characters and traits were.
Exam Critical Concepts Genetics Chapters
Chapter 4: Modification of Mendelian Ratios Allele *Wild-type allele *Mutant allele Conventional symbols for alleles: recessive allele- initial letter.
Chapter 10 HOW INHERITED TRAITS ARE TRANSMITTED. Genetics is the science of heredity.
Difference between a monohybrid cross and a dihybrid cross
Mendelian Heredity (Fundamentals of Genetics) Chapter 9
Mendel and the Gene Idea
Biology MCAS Review: Mendelian Genetics
Mendel & the gene idea Chapter 14.
Mendel’s Laws of Heredity
Mendel & the gene idea Chapter 14.
Mendel & Inheritance SC.912.L.16.1 Use Mendel’s laws of segregation and independent assortment to analyze patterns of inheritance.
Genetics: Mendel & The Gene Idea.
Lecture # 6 Date _________
Mendel & the gene idea Chapter 14.
Genetics (10.2, 10.3, Ch.11) SB2. Students will analyze how biological traits are passed on to successive generations. (c) Using Mendel’s laws, explain.
Figure: 3.CO Title: Wrinkled and Round Garden Peas Caption:
Lecture # 6 Date _________
Presentation transcript:

Lecture for Tuesday September 23, 2003 What’s due? CH2 problem set Assignments: CH4 problems: 1-5, 8, 10, 11, 14, 16, 17, 21, 22 What’s due Thursday 9/25? CH3 problem set Today’s lecture: Review material from 9/18 Human Pedigrees Begin CH4 Today’s Lab: Maize segregating ears: Dihybrid cross and chi- square analysis *Exam I is one week from today! Reading assignment: Omit sections 4.8 and 4.9

Review: Trihybrid cross- A genetic cross between two individuals involving three characters (also referred to as a three-factor cross) The Forked-Line Method (branch diagram): Recall: *The F 1 that result from a monohybrid cross (AA x aa) all have the genotype Aa and the phenotype represented by A *The F 2 that result from a cross between 2 individuals from the F 1, have a phenotypic ratio of 3:1 *Assume independent assortment of the 3 gene pairs KEY: We are examining the resulting phenotypes!

Review Chi-Square Analysis: Mendel’s monohybrid and dihybrid ratios are predictions based on the following assumptions: 1.Each allele is dominant or recessive 2.Random segregation of alleles 3.Independent assortment 4.Fertilization is random NOTE: *The outcomes of 2-4 are “chance events” and are subject to random fluctuation *As sample size increases, the average deviation from expected results decreases Establishing a null hypothesis (H 0 ): States that there is no difference between the observed and expected data An Example (for a monohybrid cross): The observed phenotypic ratio is 3:1

Review Chi-Square Analysis: The null hypothesis is analyzed statistically: *It may be rejected or *It may fail to be rejected Chi-Square (X 2 ) Analysis: *Examines deviation between observed and expected numbers *Accounts for sample size (o-e) 2 X 2 =  e Interpretation: *determine df (n-1) *typically use p value of 0.05 or greater (i.e. 0.01, 0.001) *reject or fail to reject null hypothesis

Review Chi-Square Analysis: p value (probability): consider as a percentage (i.e = 5%) *A level of error that is acceptable to the researcher in analysis of data *5% of the time your result (or outcome) is due to chance *95% of the time your results are not due to chance *If your calculated X 2 is GREATER than that shown at p = 0.05, then you reject your null hypothesis *Therefore, we CAN NOT reject our null hypothesis! Example from Table 3.1: Calculated X 2 = 0.53

Human Pedigrees Pedigree- a family tree that shows the phenotype of a particular trait for each family member = Female = Male =Unknown *Shaded symbol=expressed phenotype *Individuals KNOWN to be heterozygous are half shaded *Horizontal lines connect parents, vertical lines lead to offspring *Proband (p)= individual in whom a genetically determined trait of interest is first determined

Chapter 4: Modification of Mendelian Ratios Allele- (short for allelomorph) alternative forms of the same gene *Wild-type allele- allele that occurs most frequently in a population (arbitrarily designated as “normal”); usually dominant *Mutant allele- allele that contains modified genetic information and often specifies an altered gene product Conventional symbols for alleles: recessive allele- initial letter of the name of the recessive trait, lowercased and italicized dominant allele- same letter in uppercase Tall = D Dwarf = d Example: BRCA1 or BRCA2- (humans) Breast Cancer susceptibility SUPERMAN- (Arabidopsis) regulates genes involved in floral development Genetic nomenclature is extremely diverse!

Incomplete or Partial Dominance Incomplete dominance- expression of a heterozygous phenotype which is distinct from, and often intermediate to, that of either parent Cross between parents with contrasting traits: Red flowers or white flowers Offspring with an intermediate phenotype: pink flowers

Incomplete or Partial Dominance con’t C R C R x C W C W CRCWCRCW C R C W x C R C W ¼ C R C R ½ C R C W ¼ C R C W

Codominance: Codominance- Condition in which the phenotypic effects of a gene’s alleles are fully and simultaneously expressed in the heterozygote Example: MN Blood group- red blood cells contain a transmembrane glycoprotein (glycophorin); two different forms of this protein exist, M and N Genotype L M L M L M L N L N L N Phenotype M MN N L M L M X L M L N ¼ L M L M ½ L M L N ¼ L M L N We can predict genotypic and phenotypic ratios

Multiple Alleles- three or more alleles of the same gene Examples: *Table 4.1: over 100 alleles at a given locus in Drosophila *ABO Blood group in humans Multiple Alleles: *Characterized by the presence of glycoprotein antigens on the surface of red blood cells *Distinct from the M and N antigens *Also exhibits codomiance Genotype I A I A I A I O I B I B I B I O I A I B I O I O Antigen A A B B A,B Neither Phenotype A A B B AB O

Lethal Alleles: Lethal Allele- recessive allele in which a homozygous genotype results in death Example: Coat color in mice *A = agouti = wild-type allele *A Y = yellow = mutant allele Dominant Lethal: Huntington’s disease (H); heterozygous individuals (Hh) have late onset

Combining modified modes of inheritance:

Gene interaction: Individual characteristics (discrete phenotypes) are often under the control of more than one gene Epistasis- from the greek “stoppage”, interaction between genes such that one gene interferes with or prevents the expresion of another gene Example: In Drosophila, the recessive gene eyeless (when homozygous) prevents the expression of eye color genes present in genome Novel phenotypes due to gene interaction Example: disc-shaped fruit (AABB) X long fruit (aabb) F 1 are all AaBb and disc-shaped F 2 Ratio 9/16 3/16 3/16 1/16 Genotype A-B- A-bb aaB- aabb Phenotype disc sphere sphere long Final phenotypic ratio 9/16 disc 6/16 sphere 1/16 long